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Abstract—Analyzing developers’ activity is an essential step in
understanding a software project. When assessing the status of
a project and studying its history and development, it is vital to
assess the performance of each contributor with high precision.
Unfortunately, as Version Control Systems (VCS) do not manage
the concept of developer identity in a precise fashion, it is often
hard to connect a single identity with all the contributions a user
has made to the project, by taking into account potential aliases
of the same person.

Our work aims to bridge this gap by processing the informa-
tion related to the identities of contributors in the most popular
projects available on GitHub, and to visualize their activity over
time. The visualized identities are built on top of a disambiguation
algorithm that aims to merge aliases of the same person into a
single entity. Moreover, we perform bot detection to differentiate
the activity made by bots from the one of humans. At last, we
cluster the resulting identities to find users with the same activity
patterns. By interacting with the proposed visualizations, one can
precisely analyze the contributions of the people working on a
project. Video URL: https://youtu.be/O98IsBDBXKY
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Version Control Systems (VCS) store a variety of data
including repository metadata, commit snapshots with author
information and changes, branches and tags for managing
project history, file contents, an index for staging changes
before committing, metadata such as file permissions and
timestamps, etc.

Previous studies have used VCS data to perform tasks on
software repositories, such as gaining insights on projects
and communities [1], [2] and performing bug prediction [3],
despite known shortcomings, such as the fact that the history
may be altered by the repository owner [4]. In recent studies,
VCS data has also been the main source of information
when analyzing developers’ activities [5]–[9], including their
productivity [10]–[12].

To support the process of analyzing VCS data, researchers
began to support the community by presenting various tools
that aimed to enable better understanding and allow interaction
with the data itself using visualizations. Often these tools aim
for a broader approach, by combining information derived
from different sources (e.g., mailing lists, issue trackers)
or different projects of the same ecosystem (e.g., Gnome,
Apache). Providing such a high level of interaction with the
data often results in these tools not being able to address
problems in a more fine-grained fashion.

Researchers looking into this data to investigate developers,
often base their findings on the identities who are typically
represented in VCS as commit signatures (full names and
email addresses) of the committers and authors of the commit.
However, it may happen that project members use more than
one identity on the same repository, and by doing so spread
their contribution in what for the system become different
and independent identities. Overlooking this behavior may
undervalue individual contributions, which can skew research
results and have an impact on professionals using different
collaborative development platforms.

Moreover, as bots are increasingly utilized in software de-
velopment to streamline processes, improve efficiency, and en-
hance collaboration [13], it is important to consider them when
employing and visualizing data regarding developers’ iden-
tities. Differentiating between automated and non-automated
activities is essential to better understand the data gathered
from VCS.

The focus of our work is to provide a comprehensive
visualization of the community of contributors involved in the
development of a specific software system that uses Git as
version control system. By accurately and clearly representing
the contributors, we aim to obtain a deeper understanding
of the dynamics, structure, and behavior of the communities
structure. To achieve this, we also address the long-standing
challenge of aliasing, where a single developer may use
multiple identities, and the presence of bots, which can be
mistaken for human contributors. By resolving these issues,
we ensure a more structured and well-defined representation
of the community itself. To accomplish this, we employ a
set of custom algorithms, built upon the state-of-the-art tools
currently available. Furthermore, based on the contribution
activity collected using the commits, we process the obtained
identities to create clusters of users that behaved similarly
during the contribution to the project.

By tackling these issues, we present a custom interactive vi-
sualization approach which provides a clearer comprehension
of team dynamics and individual contributions, thereby facil-
itating more effective project management and collaboration
[14]. Additionally, our visualization provides a more concrete
understanding of the activity in the project over time, revealing
trends, patterns, and insights of the project’s evolution, and
enables the identification of key contributors and their levels
of engagement, allowing for more effective collaboration and
knowledge sharing.

https://youtu.be/O98IsBDBXKY
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II. RELATED WORK

In the context of visualization, researchers have developed
various interactive tools to visualize metadata in Git, providing
a better understanding of large software development projects
through visual representation. Dominos, developed by Da
Silva et al. [15], explores project relationships, including
connections between developers, classes, methods, and other
collaborators. Similarly, Githru, presented by Kim et al. [16],
offers a visual analytics system that allows users to filter
metadata by specific authors and timeframes. Furthermore,
Git-Truck, developed by Højelse et al. [17], provides visu-
alizations of contributors and enables the manual merging of
aliases to analyze their histories as a single entity. Stephany
et al. proposed the first tool aimed at analyzing and visualizing
OSS developer communities named Maispion [18]. The tool
leverages mailing lists and version repositories to generate
visualizations and provides insights into the ecosystem of OSS
development. Subsequently Dueñas et al. introduced Perceval,
which is able to perform automatic data gathering from tools
related with contributing to open source development, e.g.,
source code management, and issue tracking systems while
keeping into consideration the existence of aliases belonging
to the same individual [19]. Feist et al. presented TypeV,
which leverages abstract syntax trees to show the activity of
users, while also allowing to manually merge identities [20].
Lastly, Moreno et al. proposed SortingHat, a tool that helps
to track and manage unique identities of project members in
software projects, particularly open-source ones. It merges and
matches contributor identities across different platforms, such
as email and username, and provides additional information on
members’ gender, country, and organization affiliations. The
tool allows for interactive manipulation of identities and bulk
loading via batch files, making it a useful solution for projects
with large communities [21]. Whilst these tools provide good
insights, they depend on the final users that are required to
manually add relationships between accounts. Moreover, most
of these solutions are only useful when applied from the start
of the project lifecycle, thus making them not easily applicable
to already existing projects.

Identity disambiguation has been extensively researched
across multiple domains. In the field of software engineer-
ing, researchers have proposed a variety of approaches to
undertake this challenge, drawing on machine learning, natural
language processing, and data mining. Furthermore, as Robles
et al. [22] discovered, integrating data from heterogeneous
sources makes identity disambiguation even more difficult
[23], [24]. Existing identity disambiguation algorithms can
be broadly classified into two categories: Endogenous and
exogenous approaches [25]. Endogenous approaches operate
within a “closed world” assumption, relying solely on data
from the original repositories to disambiguate identities based
on string similarities [26]. In contrast, exogenous approaches
leverage external information, such as mailing lists, to resolve
ambiguities [27]. Over the years, various algorithms have been
proposed to address this issue [28], [29].

Bird et al. [30] pioneered the use of string similarity to
identify correlations between aliases, demonstrating the feasi-
bility of relation detection based on basic attributes like emails
and usernames. Subsequent studies built upon this foundation,
either enhancing performance through refined techniques [31]
or introducing novel heuristics [25], [32], [33]. Comparative
analyses of various approaches [34], [35] revealed that while
existing algorithms can effectively address the problem to
some extent, there remains room for improvement. Notably,
Gambit [31] currently stands as the most effective endogenous
approach, achieving a disambiguation rate of 98% within a
repository through a series of heuristics evaluated against
a manually constructed ground-truth. Furthermore, Amreen
et al. [33] proposed ALFAA, an active learning-based disam-
biguator that leverages commit messages, edited files, name,
and email information to improve identity resolution.

Recent studies have highlighted the significant impact of
bots on various aspects of software development, including
automated code reviews, continuous integration and deploy-
ment, and issue management [36]–[39]. For instance, bots like
Dependabot and Renovate have become crucial in managing
dependencies and maintaining security by automatically up-
dating libraries and frameworks [40]. Identifying bot accounts
is challenging, which complicates socio-technical analysis that
requires differentiating between human and bot behavior [41].
Given the now known impact, researchers have started to find
solutions to identify the presence of bots within developer
communities, particularly in the context of OSS.

Dey et al. proposed BIMAN [13], a systematic approach
to detect bots using author names, commit messages, files
modified by the commit, and projects associated with the
commits achieving an AUC-ROC of 0.9. Later, Golzadeh et al.
tried to detect the presence of bots in distributed software
development activity by leveraging the pull requests and issues
comments of GitHub accounts [42], [43] resulting in a tool
named BoDeGHa. Based on the ground-truth dataset proposed
on the paper, the authors were able to achieve a very high
weighted average precision, recall and F1-score of 0.98 on a
test set containing 40% of the data. Moreover, they applied
the same techniques on commit messages [44] with their
tool named BoDeGic, achieving a precision of 0.77 on the
dataset proposed by Dey et al. [13]. Along the same lines,
Abdellatif et al. [45] proposed BotHunter, a machine learning-
based approach to identify the bot accounts regardless of their
activity level by selecting and extracting 19 features related to
the account’s profile activities. The model evaluation showed
an F1-score of 92.4% and AUC of 98%. Lastly, Chidambaram
et al. introduced Rabbit [46], an open source command-line
tool that queries the GitHub Events API to retrieve the recent
events of a given GitHub account and predicts whether the
account is a human or a bot. The tool, which aims to reduce the
GitHub API notably high consumption of other bot detection
tools, achieves an AUC, F1 score, precision and recall of 0.92.

Our work aims to leverage state-of-the-art techniques to
achieve a concrete and reliable representation of the users
involved in the development of software systems.
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Fig. 1: Detailing the visualization approach

III. VISUALIZATION

The goal of our visualization is to foster the exploration
of the developers involved in a software system. Some pre-
processing steps are needed to better represent our domain of
interest: Individuals.

Figure 1 shows an example of our visualization on an
average-sized repository i.e., Webui §. The project counts 139
unique GitHub Contributors and 144 unique Identities disam-
biguated with our own algorithm described in Section IV. As
of June 12 2024, the repository counts 24,383 commits over
more than seven years of life.

A. User Rows

The User Row is the heart of our visualization. Its goal is
to represent the Persona (definition in Section IV) and their
activity in the repository, in terms of added and removed lines
of code. The User Row also serves as a representation element
for the Special Rows that the visualization may include at the
bottom, as we will discuss later. Figure 2 shows an example of
User Row, where A represents the Activity Graph Timeline
and B represents the User Chip.

Activity Graph Timeline. It aims to visualize the activity
of the user in the repository over time. As shown on the left
side of Figure 2, it is composed of three main elements:

https://github.com/truenas/webui
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Fig. 2: Detailed example of User Row

• Timeline. This line, aligned with the timeline at the
bottom of the visualization, helps the user to keep track of
the position of the activity in time. The vertical elements
correspond to the start of a new year.

• Insertions Blocks. The green blocks represent the
amount of insertions the user committed to the source
code in a specific month; the higher the box, the more
insertions there were.

• Deletion Blocks. The red blocks represent the
amount of deletions the user committed to the source
code in a specific month; the taller the box, the more
insertions there were.

Each column of this activity timeline is composed of one
insertion and one deletion block and refers to a month of
activity in the lifetime of the repository, for the given Persona.
To reduce graphical complexity, the height of the insertions
and deletions blocks is computed by smoothing the exact
number of insertions/deletions collected during the mining
with a natural logarithm function.

User Chip. This UI component encapsulates information
pertaining to an individual’s identity. These chips serve as a
concise and efficient way to display key identity details. An
example can be found on the right side of Figure 2. The chips
display four important pieces of information.

Firstly, the user can read the name inferred using the NER
algorithm (for privacy purposes, in this study, the names have
been anonymized). Then, between brackets, it is possible to
read the number of aliases that hide behind the same Persona.
On the rightmost part of the chip, an icon helps to distinguish
the three possible types of Persona, based on the bot detection
execution.

The three different types are:

•   Human. This type is assigned to the Personas which
are composed of aliases that are detected as humans by
the bot detection tool.

• Æ Bot. A Persona is assigned the Bot type when all the
aliases linked to it are detected as bots.

• ? Unknown. When the bot detection process fails to pre-
dict the type of a Persona, or the aliases are both bots and
humans, the system automatically assigns the unknown
type. This type is also used for grouped elements with at
the least two different types of Personas inside.

Lastly, the color of each chip corresponds to the cluster
to which the individual belongs, providing a quick visual
reference for group affiliation. By hovering on the chip, the
user will see a list of information on the user such as the
number of months of activity (Figure 4a).

B. Clusters

The clusters of User Chips shown in the visualization (right
side of Figure 1) are the representation of the results of a
clustering algorithm, described in Section IV. The goal is to
group the identities based on different activity patterns, i.e.,
contributors working on the project in different years.

Each cluster is defined by a specific color which is used as
background for all the chips of the Personas belonging to the
same cluster. From top to bottom, the elements of each cluster
are ordered from most to least active within the cluster itself.
Clusters are also ordered from most to least active. The space
between each cluster is designed to help the user make the
distinction between clusters easier. This clear visual separation
ensures that users can quickly and accurately identify the
activity levels and groupings of contributors.

C. Special Row(s) and Project Timeline

The bottom of the visualization, together with the Timeline
that tracks the lifetime of the repository, is dedicated to all
the optional Special Row(s). Differently from simple rows that
represent a single Identity, this rows aim to represent a specific
group of contributors of the repository.

Given that a repository may have a very large number of
contributors, it is sometimes necessary to reduce the amount
of data by grouping the less active users (Remaining Users)
on a single line. A Special Row named Remaining Users
(Figure 3 B ), is designed to do exactly that. For this reason,
the visualization will always have such a row at the bottom
of the graph. Moreover, when the list of contributors includes
(detectable) bots, we employ an ad-hoc Special Row to group
all the bots in a single activity line, as shown in Figure 3

A . This group is especially useful to summarize the activity
of bots in the repository and understand their overall impact
on the project. Lastly, Figure 3 C highlights the Timeline
of the project. In this timeline we track the years of activity
by drawing a vertical line across the entire visualization,
to represent the sequence and timing of events. Figure 1
summarizes the visualization, highlighting all the UI elements
that compose it.
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Fig. 3: Example of Special Rows

We also introduced a set of interactions with the visualiza-
tion, i.e., filtering, tooltips and interactive menus, that enable
deeper exploration, allowing users to navigate the data in a
more customized and accurate manner.



D. Interactions

As previously said, the volume and popularity of the project
itself determine how many contributors a repository has. Usu-
ally (especially in OSS projects) the number of contributors
is quite high and difficult to represent. For this reason, our
visualization performs pre-processing before displaying the
data. Nevertheless, sometimes preprocessing cannot reduce the
noise in the data sufficiently to make the visualization usable.
For this reason we provide to the user a list of filters, useful
to further reduce the number of identities visualized at once.

Users can thus enable the filters and cut the visualized
identities based on two different criteria: (a) The minimum
number of commits the identity should have performed over
the years, and (b) the number of months of activity in which
the individual contributed to the project. By doing so, it is
possible to reduce the list of relevant contributors and simplify
the visualization.

Additionally, by right-clicking the User Chip (Figure 4b),
one can check all the information regarding the Persona’s
activity, including the list of commits that they made, and
breakdown the Persona to display all the aliases on a freshly
built visualization that adheres to the same criteria.

(a) Hover Tooltip (b) Right-Click Menu

Fig. 4: User Chip Interactions

Figure 5 shows an example of the decomposed Persona
visualization.
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Fig. 5: Unpacked Persona visualization

IV. TECHNICAL BACKGROUND

Our goal is to visualize and interact with identities that
contain all information generated by the same person, even
if created under different aliases within the versioning system.
For this reason, we introduce the concept of “Persona”, that
represents the individual in the context of a repository. More-
over, we process the information collected for each individual
to find the best way to identify them (i.e., what name represents
the Persona better among all the aliases), and to model and
adapt the data to our goal of visualizing the activity in the
repository over time. Figure 6 depicts all data processing
techniques.

Persona 
Reification

Name/Email
Similarity Matching

Fingerprints
Comparison

Persona Profiler

Name Entity 
Recognition

Custom detection 
tool

Bot Detection

Agglomerative 
Clustering

Persona Groups

Fig. 6: Overview of the approach employed under the hood

A. Data Collection and Manipulation

To support our analysis and observations, we collect data
from well-known OSS by relying on GitHub’s Stars system,
which lets users bookmark and show appreciation for reposito-
ries. A repository’s popularity among other GitHub users can
be roughly estimated by looking at its star count. High star
count repositories are typically thought to be more dependable,
useful, and popular. As a result, we sort all GitHub public
repositories by star count and mined data from 7 of the top 10.
Three projects were excluded as their size made data collection
prohibitive for the purposes of our study. Table I shows the
list of repositories taken into consideration.

TABLE I: Top 10 popular projects in GitHub (28 May 2024)

Name Commits Stars Utilized

freecodecamp 35,430 389,886 Y
developer-roadmap 4,175 275,869 Y
react 18,716 223,064 Y
vue 3,590 207,037 Y
tensorflow 163,529 182,509 N
linux 1,275,250 171,548 N
ohmyzsh 7,235 169,475 Y
bootstrap 22,800 167,621 Y
flutter 40,795 162,153 Y
vscode 121,425 158,513 N

Data Preprocessing. Before being visualized, the data of
the Personas collected from the repositories undergoes a series
of pre-processing steps. We collect all the insertions and the
deletions for each month of activity for each persona. Using
months as the time granularity provides a number of benefits.

Computation time is reduced without information loss,
while the overall visualization is still able to communicate
the activity for each Persona and the overall activity of the
repository under analysis. Moreover, the number of insertion-
s/deletions for each month are smoothed using a logarithmic
function, to make the data more resilient to exceptional or
recurrent short events, where the users are much more active
than usual. Lastly, we detect the main contributors of each
repository to avoid the visualization of the big slice of devel-
opers, that only contributed to the project with a handful of
commits in a really short amount of time. To do so, we need
to detect the most frequent committers. We compute the first
(Q1) and third (Q3) quartile in terms of number of commits,
and the interquartile range (iqr) [47], [48].



As most of the contributors of the repository have low
activity, the outliers over Q3 are the users with the most
contributions. We detect major contributors using Tukey’s
formula for outlier detection [49]. Thus we label as major
contributors the contributors with ncommits > Q3 + 1.5 × iqr
and aggregate all the others as minor contributors.

B. Disambiguation

To merge aliases and disambiguate identities by only relying
on data available in VCS such as Git, we implement a two-
step algorithm that takes into consideration not only names
and emails, but also other information available directly from
the Git logs (such as the files edited in the contribution an
Alias makes to the repository). The algorithm is composed of
two main pillars: string similarity, and fingerprint heuristics.
While the algorithm mainly relies on string similarity, the
fingerprint heuristic also contributes significantly to the results
of the disambiguation. Moreover, our technique is independent
of external resources and can be applied to any repository with
a Git history.

String similarity. We adopt the techniques applied in Gam-
bit [31]. Gote et al. computed the similarity between different
entities using a set of ten rules, which involve comparing full
names and emails, as well as first, middle, and last names,
or email bases directly extracted from the name and email
strings. To gather such data for the comparisons, preprocessing
is applied to extract elements such as parts of the names and
email bases from the input strings. To reduce false positives,
a similarity threshold is required, and based on Gambit’s
authors’ guidelines, the optimal threshold is 0.95.

Fingerprints. We build our set of fingerprints on the
features employed in ALFAA [33]. Specifically, we imple-
ment a comparison among the files edited by each alias by
constructing a vector for each alias that indicates whether or
not a file was edited (e.g., [0, 1, 0] where F0 and F2 are not
edited, and F1 is edited). The list of file is computed as the
intersection of the files edited by the two aliases that are being
compared. Then, we compute the cosine similarity. By doing
so, we aim to catch cases in which the same developer edited
the same group of files using different aliases.

As output of this process, we obtain a list of Personas.
Each Persona gathers all the aliases detected as owned by
the same individual, incapsulating the information regarding
all the contributions the individual has made to the repository.

C. Name Recognition

The goal of this step is to identify and select the most ap-
propriate human name from a list of potential names, gathered
from all the aliases merged together during the disambiguation
of the identities. We do so by leveraging natural language
processing techniques. First, we process each name to handle
formatting inconsistencies, as names may be inconsistently
formatted. Then, we rank them based on their likelihood
of being recognized as person names from a Name Entity
Recognition [50] model, and then select the highest-scoring
name as the name of the Persona.

Ethical Concerns. For privacy reasons, despite being pub-
licly available data, in the following study all the users
involved in the analyzed repositories will be anonymized.

D. Bot Detection
To perform bot detection at state-of-the-art level, we decided

not to rely on a specific tool implementation, but to combine
most of them to achieve higher performance, at the cost of
computational time. Thus, we implement a custom algorithm
that employs most of the current available bot detection tools
in the research community. Specifically, both BoDeGHa [42]
and BoDeGic [44] as well as Rabbit [46] are used as subrou-
tines for our algorithm. On top of this three external tools, we
add a more heuristic-based approach, inspired by BIN which
is part of the BIMAN approach for bot detection [13]. The
heuristics step of our detection aim to filter out the obvious
bot accounts: Those containing strings such as bot, test, auto,
actions either in their name or GitHub account username.

After running these four detection approaches on all the
users in the repository under analysis, we compute a weighted
average of the results to conclude whether the user is a bot or
a human. The weighted average also keeps into consideration
the fact that the three CLI tools employed in this process often
are not able to assign any label to a given account, thus giving
no results. In this case the heuristics comes in handy as it helps
filtering a not so small set of users that otherwise would have
gone unnoticed. The weights are applied as follows:

Heuristics = 0.30 BoDeGHa = 0.25

BoDeGic = 0.20 Rabbit = 0.25

E. Clustering
We perform clustering on the major contributors of the

systems, with the goal of finding users with the same activity
patterns over time in the lifespan of the repository. This
helps to identify groups of people that joined forces for a
specific amount of years in the development process, or can
show how the evolution of the project led to a change of
contributors activity. We employ Agglomerative Clustering
on the distribution of activity of each Persona per month,
computing an array as follows:
A = [⌈ln(I1 −D1)⌉ , ⌈ln(I2 −D2)⌉ , . . . , ⌈ln(IN −DN )⌉]
The array contains, for each month of the repository lifetime

(N), the net value of insertions and deletions performed by
the Persona. In our analysis we smooth the data with the
natural logarithm to avoid exceptional values and normalize
the values between different Personas. The arrays are then
clustered using Agglomerative Clustering. This technique is a
type of hierarchical clustering method used to group objects
into clusters based on their similarity using linkage distance,
which is the shortest distance between two points in each
cluster. It follows a bottom-up approach, starting with each
object in its own cluster and iteratively merging the closest
pairs of clusters until a single cluster or a specified number
of clusters is formed. This method does not require a fixed
number of clusters as input as opposed to common algorithms
such as K-means, ensuring more flexibility to our approach.
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Fig. 7: Visualization applied to Bootstrap GitHub repository

V. UTILITY AND PRACTICAL APPLICATIONS

To evaluate the effectiveness of our visualization, we illus-
trate our approach on three different projects. The visualiza-
tions we are going to analyze were obtained after applying
some filters to reduce the complexity of the data. Table II
displays the three repositories and the filters we applied on
them.

TABLE II: Case-study Repositories and Filters

Filters applied:
Repository Commits Activity Months

§ React 35 20
§ Bootstrap 35 12
§ Vue 10 6

For example, 35 commits and 12 activity months means
that we only depict user rows that have performed at least 35
commits and that were active during at least 12 months, while
those with less commits and fewer months are aggregated in
the Remaining Users row.

A. Bootstrap

Bootstrap is a popular front-end framework for developing
responsive and mobile-first websites and web applications.
As of June 12 2024, the project counts more than 1,250
contributors, 22,816 commits and more than 13 years of life.
It is the 8th most popular software system publicly available
on GitHub, in terms of stars. Figure 7 shows our visualization
applied on the project, with the filters described in Table II.

At a first glance at the visualization, there is a clear
distinction between the users that contributed to the project
for most of its lifetime, and the ones that contributed to it for
a specific time period. Specifically, the cluster A is composed
of the most active contributors overall, and includes the ones
that kickstarted the project in 2011 together with what looks
like the most active user on the project overall.

Moreover, Figure 7 B highlights three small clusters of
users that highly impacted the project at some point during
its lifetime. Cluster B3 is composed of two users, using 10
aliases in total (!), that contributed to the project in the first
five years. Cluster B1 shows three contributors (9 aliases) that
were active from 2015 to 2020. Lastly, cluster B2 shows three
users (5 aliases) that started their activity in 2020 and persist
to this day in contributing to the project. Finally, Figure 7 C

points out the usage of automated code committers starting
from 2020.

Anonym User 1

Anonym User 5

Anonym User 3

Anonym User 2

Anonym User 4

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Fig. 8: Unpacked visualization for the first user in cluster A

Figure 8 displays the unpacked visualization for the first
user in the cluster A . We can see that, out of the 5 detected
identities, the user committed consistently with two of them
throughout the years.

https://github.com/facebook/react
https://github.com/twbs/bootstrap
https://github.com/vuejs/vue
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Fig. 9: Visualization applied to React GitHub repository

By analyzing Bootstrap with our visualization, we were
able to gather some interesting insights on the contributors
dynamics in the project. First of all, we could see how a
group of developers remained active for the entire lifetime
of the repository, with one of them being the most active
contributor to the project overall. Moreover, we could see how
other groups of developers contributed to the project for a
smaller amount of time before stopping. This behavior was
indeed needed to the project, as there always were at least
two developers, external of the “main group” that actively
contributed to the project. Lastly, we were able to see how
at some point in time, it was decided to introduce bots as
active code contributors.

On a side note, by checking out the usage of aliases, we
can notice how most of the active users employed at the least
two aliases when contributing to the project. In the case of
more than two aliases, often most of them were employed for
a really small contribution, while two of them carried most of
the overall contribution of the User, as seen in Figure 8.

B. React

React is a widely-used JavaScript library for building user
interfaces. React has received contributions from over 1,500
people as of June 12, 2024, with more than 21,000 commits
and nearly a decade of active development. It is the third
most popular software project on GitHub in terms of stars,
demonstrating its widespread adoption and community sup-
port. Figure 9 depicts our visualization of the React repository.

When analyzing the visualization, other than conclusions
similar to the one described for Bootstrap in Section V-A, we
can notice other trends. Figure 9 A highlights an interesting
overlap of activity between the two most active clusters of
contributors. This suggests a transition between contributors.
In detail, we can notice how at the start of the project life
Anonym User 10 and Anonym User 12 were two of the most
active, if not the most active contributors of the repository,
together with Anonym User 5. After 5 years of contributions,
these two users started contributing less to the project until
they eventually stopped.
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Fig. 10: Visualization applied to Vue 2.0 GitHub repository

While they started decreasing in contribution, we can notice
how new contributors started to be very active in the repository,
i.e., Anonym User 2, Anonym User 3 and Anonym User 4. This
suggests that during this period there was a handover to new
developers.

Anonym User 4

Anonym User 5

Anonym User 1

Anonym User 2

Anonym User 3

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Fig. 11: Unpacked visualization for Anonym User 7 (B)

Figure 9 B , unpacked in Figure 11, highlights an odd
behavior from one of the contributors. Anonym User 7, con-
tributed sporadically over the entire life of the project, with
the peak of activity being at the start of the project itself.
Figure 9 C , D and E highlights the “support” clusters.
React is supported by a main group of contributors, but over
the years other groups of developers heavily contributed to the
project: Three distinct groups supported the main developers
over the years. All of them for at most five years, and all
of them overlapping in time. This suggests a handover in the
sense of new groups led by someone that already had some
knowledge about the project, starting to actively contribute to
the project source code.

Regarding the use of aliases in the project, almost all
developers contributed with more than one identity. Moreover,
in the React project bots were not heavily employed.

C. Vue

Vue is a JavaScript framework for building user interfaces.
Vue has accumulated contributions from over 600 contributors,
with more than 30,000 commits and over 9 years of devel-
opment. The repository we analyze, Vue 2.0, is still under
maintenance but has been superseded by version 3.0.

Figure 10 shows the results of our visualization on this
project. Figure 10 D highlights the release year for Vue
3.0, which corresponds to the same year when the Vue 2.0
project started to be under maintenance. We decided not to
merge bots but to leave them as unfiltered users displayed
in the visualization. Figure 10 B highlights a cluster that is
exclusively populated with activity that is coming from bot
users. The activity of the bots only lasted three years, and
peculiarly the release year for Vue 3.0 was right in between
the activity of the two bots. Despite the short lifetime of
the repository (less than five years of active development
going from 2016 to 2020), the core of the implementation
happened in the first two years of life, as Figure 10 A and

C highlights.



After that, most of the development weight fell on the most
active contributors (who are part of the most active cluster of
contributors). It is also possible to notice how, after the release
of the new version of the framework, the overall amount
of activity decreased considerably, with a peak during 2022.
While most of the activity is now dedicated to maintenance,
the community still actively contributes to the project, as we
can see from the “Remaining Users” row.

VI. CONCLUSION

We presented a novel way to visualize the activity of the
developers, using data from VCS such as Git. This visualiza-
tion can greatly reduce the complexity of the data stored in
version control systems, regarding both the activity and the
identity of the contributors. We have applied our visualization
on case studies to illustrate its usefulness.

A. Reflection on the Results

The visualization is able to illustrate the intricate relation-
ships and interactions among the community of developers
in the context of software systems. The visualization offers a
quantitative and spatial representation of these relationships,
making it easier to identify central figures and peripheral
participants in the community. It also highlights dense clusters
of nodes representing developer collaborations and reveals
patterns of interaction. It also support the investigation of
activity around a single developer, by handling aliases in a
precise fashion. Lastly, it helps to distinguish the kind of
activity in the repository, by differentiating between humans
and bots.

The visualization highlights who plays what role in the
social structure of the system under analysis, and helps to
easily identify who are the Project Initiators and Core Mem-
bers in charge of guiding and coordinating the development
of the software system, while also identifying the Active and
Peripheral Developers involved in the project [51]. Moreover,
it supports the observation of peculiar community dynamics
such as takeovers in contribution [37]. Lastly, when analyzing
systems that go through periodic update and release cycles,
such as the Vue case study, it can support understanding on
the dynamics of collaborations between developers in this key
moments of the software system lifetime [52].

For community managers, the visualization could serve
as a tool to identify key developers and potential mentors,
facilitating targeted interventions to enhance community co-
hesion. For developers, it can provide a clearer picture of
the social landscape, helping them navigate collaborations
more effectively. Researchers can leverage the visualization
to form new hypotheses about dynamics within community
and identities, and further investigate the underlying social
mechanisms.

B. Limits of the Approach

Even with its usefulness, there are some limitations that the
visualization inherits from the data pre-processing employed
under the hood before the data gets visualized:

Identity Disambiguation. Although our disambiguation
algorithm uses state-of-the-art approaches, identity disam-
biguation remains a critical problem. Our algorithm may still
produce incorrect results, such as merging identities that do
not belong to the same individual.

Activity Clustering. The clustering used in the visualization
process offers a straightforward approach to group similar
activity patterns. Its simplicity ensures efficient computational
performance, but it may result in incorrect groupings within
clusters. Additionally, the use of an algorithm that automati-
cally generates an arbitrary number of clusters can lead to the
creation of an excessive number of unnecessary clusters.

Bot Detection. The bot detection process is still unreliable.
Specifically, most of the elements used for the bot detection
itself rely on information gathered from GitHub, such as
Issues. In some cases, there is not enough information for
these tools to distinguish whether a user is a bot or not. Even
if we tried to compensate this problem by combining tools
and merging the result, this process can still yield erroneous
results.

C. Future Work and Improvements

By applying a more precise process of identity disambigua-
tion and bot detection, we aim to enhance the reliability of
the visualization. Moreover, we aim to improve the clustering
algorithm and fine-tune its results. Lastly, to improve the
resulting identities, we aim to improve the Name Detection
algorithm, by employing a lightweight Large Language Model,
that can capture more information from different aliases, i.e.,
Real Name and Username, and merge them into a single string
that could be used as identifier.
Å Video demonstration: https://youtu.be/O98IsBDBXKY
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