
Using Animations to Understand Commits
Carmen Armenti∗, Michele Lanza∗

∗REVEAL @ Software Institute – USI, Lugano, Switzerland

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1109/ICSME58944.2024.00069

Abstract—Commits, which log the changes that have been
performed by developers, are the central mechanism to drive
the evolution of software systems. Understanding the intricacies
of commits can be a non-trivial endeavour. Firstly, this is due to
the diff-based textual nature of how versioning systems record
the changes. Moreover, a commit can involve several files and
pertain to various, overlapping tasks that the developer was
tackling, which can lead to difficult to understand “tangled
commits”. Furthermore, often commit messages lack quality. The
only mechanism to really understand the changes performed in
a commit is given by text-based “diff” representations, which are
cumbersome to use.

We present an approach, based on interactive animated
visualizations, to facilitate the comprehension of the changes
tracked by commits. To validate the approach, we implemented
an interactive visual analytics tool which allows developers to
dissect a commit in its constituent parts and observe, through the
animations supported by our tool, the specifics of each change.
We illustrate our approach with examples, and report on our
findings and insights.

Index Terms—software animation, program comprehension,
software evolution

I. INTRODUCTION

Program comprehension is a complex mental activity which
can take up to 70% [1] of the time of developers: Indeed,
developers spend substantial amount of time reading and
understanding source code, progressively piecing together a
coherent mental model [2] which is necessary to be able
to perform the required changes [3], [4]. The same scenario
applies to software evolution where, indeed, “people are still
reviewing changes by looking at static diffs”1. When analyzing
commits, e.g.,, during pull request reviews or code review
activities, people are faced with walls of (diff) text that pertain
to the parts of the system that have been changed.

The understanding is not only required at a finer-grained
level, but can also reside at the level of grasping “who did
what, when and why”. Commits, and the information that they
contain, are the starting point for that.

Our work is thus not directly related to code review [5],
where proposed changes to source code are reviewed by a
small number of developers before being integrated. While
we also believe that code review tools are in desperate need
of ameliorations, the focus of this work is on understanding
a commit that has been performed in the past. One might
argue that a commit is appropriately explained in the comment
that accompanies a commit. Research has however proven that
commit comments, if they even exist, are often of negligible
quality [6]–[9], which has generated a slew of research on
analyzing and even automatically generating them [10]–[12].

1� See: https://x.com/girba/status/1748071471820263894?s=20

Visualization is a well-known program comprehension tech-
nique, and indeed there have been approaches that used it
both to statically depict commits [6] and dynamically display
the history of repositories [13], [14]. However, a commit is
not a static entity, it transposes (part of) a software system
from one version to the next. Hence, we believe that while
visualization has potential, it needs to be augmented with a
technique that adequately represents the transitional nature of
a commit. A pioneer of software visualization, John Stasko,
claimed that “Programmers can more easily understand pro-
grams displayed in an animated graphical way” [15]. Taking
inspiration from Stasko’s work we present a novel approach to
aid the understanding of commits by leveraging the potential
of animations. We use interactive visualization techniques to
represent the commit context before the commit, and a set
of animations to depict how the context changes due to the
commit, resulting in the system’s new state after the commit.

We implemented a tool exemplifying our approach, which
provides also interaction capabilities. What we believe is the
main strength of our approach is the interactivity of our anima-
tions which offers the ability to investigate and inspect the files
pertaining to the commit, which goes beyond the basic features
offered by animations tools, such as pausing, re-winding or
replaying the animation steps: At any moment in time our
tool allows one to inspect every entity partaking in a commit.
We describe our approach, present the tool supporting the
approach, and illustrate both on selected examples, reflecting
on the findings and discussing the future potential of the idea.

II. RELATED WORK

Software visualization seeks to ease program comprehen-
sion [16], aiding the user by providing insights and understand-
ing [17], [18]. Yet, most of the views depict static information
thus struggling to represent dynamic aspects of software sys-
tems, e.g., software behaviour. Often, a demonstration of the
states through which the system passes is needed, especially
when the scope of the representations is software systems,
which are dynamic by nature [19].

Stasko proposed an approach to convey the meaning and
purpose of programs, based on animated graphical views [15].
He stated that the meaning, methodology and purpose of a
program are better explained by algorithm animations than
program’s textual representation, and that program animations
help with: (a) program understanding, also useful in computer
science education; (b) evaluating existing programs, helping in
monitoring system performance; (c) developing new programs,
illustrating behaviors not evident during their initial design and
serving as a “graphical debugger”.

https://www.doi.org/10.1109/ICSME58944.2024.00069
https://x.com/girba/status/1748071471820263894?s=20

The use of animations was employed in other disciplines
other than software engineering [19]–[21]. Algorithm anima-
tions have been used primarily for instructional purposes, but
also for industrial prototyping and simulation [22].

Salomon reports that animations, by dynamically displaying
a process or a procedure, compensate for a student’s scarce
aptitude or skill to imagine motions [23]. Dynamic visual-
izations help in visualizing a process reducing cognitive load
compared to a situation in which the process or the procedure
has to be reconstructed from a series of static pictures [24].
Hoffler et al. conducted a meta-analysis of 26 primary studies,
yielding 76 pair-wise comparisons of dynamic and static visu-
alizations, which revealed a medium-sized overall advantage
of instructional animations over static pictures [25].

The rationale for the effectiveness of animations is based on
the cognitive load theory, which provides a theoretical founda-
tion to explain the superiority of educational animations over
static graphics [26]–[28]. It reports that by viewing animations,
learners do not exert cognitive effort to mentally construct
dynamic representations, releasing cognitive resources, which
could be used for learning-related activities and deep pro-
cessing. Learning with static visual representations requires
information integration and inferential reasoning, imposing
mental load on learners. Animations are a sequence of visual
representations composed by sequential frames, and one of the
purposes they are used for is to ease the understanding of the
functioning of dynamic systems that change over time [29].

Commits, atomic units of change, by tracking information
about the evolution of systems are a valuable resource to
support software evolution research. Researchers aimed at un-
derstanding commits while analysing history logs of software
systems to comprehend their evolution. Hattori et al. [30]
proposed a size segmentation of commits based on the number
of files they contain. Alali et al. [31] also aimed at character-
ising commits, including file and hunk diffs. Commits adhere
to some rationale [32]. Tao et al. [33] found that the most
important, the most frequent according to Codoban et al. [34],
information needed to understand commits is logic. The logic
of a piece of software, documented by commits, is conveyed
by textual code-diffs. However, reading and understanding
text, and thus code-diffs, is a demanding task [15], [18], [35].

Commits analysis and understanding is key in the context
of program comprehension. The available tools either rely on
overwhelming textual representations of code-diffs or on more
effective, although highly coarse-grained, animated displays.
Tools such as GitLens and GitGraph allow the exploration of
commits histories. However, the systematic way they offer to
control different versions of files as they evolve (file diffs), is
text-based. Similarly, the vast majority of code reviews tools,
such as Gerrit or the GitHub web interface, present the changes
to review as a list of textual diff-hunks.

Visualization tools such as Gource allow to visualize the
activity of a git repository in an animated fashion, but often
follow a “play and stay still” approach: The final movie does
not allow for interaction and inspection of the changes being
displayed, and the granularity depicted is fairly coarse-grained.

Even though visual interfaces to explore commits history
have been provided, developers broadly rely on code-diffs to
understand what happened in a commit. Relying on textual
information is useful to some extent, but generates issues
pertaining to comprehension – an exemplifying evidence of
this was presented by Fregnan et al. [36]: Code-diffs are the
first information every developer looks at when a commit
message is not well written. On the other hand, the reviewed
literature shows that animations are useful for representing and
explaining concepts that are difficult to be comprehended at
an abstract level. Similarly, text processing is more difficult
than visual processing for human brains.

Our vision of commits understanding is based on a “play,
watch, interact” rather than a “read-only” or “play and stay
still” approach. Therefore, we base our idea on intuitive and
interactive animated visualization, where the change between
two sequential commits is represented in its dynamic nature
and where interaction to further inspect and analyze the
content of each file version displayed is provided.

III. APPROACH

Commits are depicted as text-based “diff” representations
by all modern tools. This respects the way that VCS track
system versions, but neglects the real dynamics of how files
mutate from one version to another. It also limits one to
consider individual files, while in fact the files pertaining to
a commit often change in concert. With respect to time, diff-
based changes logging has limitations: It squashes the time
period during which changes have occurred discarding relevant
details [6], [30], [37]; it hinders program comprehension,
leading developers to spend most of their time understanding
”why code is implemented the way it is” [3]. The central idea
of our approach (see Figure 1) is to reveal the evolutive nature
of file versions changes through the means of animations.

A. Data Preparation

We use PyDriller [38] to mine a repository, with each
commit undergoing further analysis using Cloc [39]. For
merge commits, we run additional custom analysis scripts
to retrieve the modifications specific to such commits, which
PyDriller is limited in doing. The data is stored in .csv files.

Commits are our unit of observation: A single commit is
decomposed into its constituent parts, namely all the files that
have been added, deleted, renamed, and modified.

B. Animation Composition

The central part of our approach deals with composing the
animation, split into 5 stages sequential in time, as follows:
1) Pre-Commit. Each file participating to the commit is

visualized, together with its name and a bar, whose length
encodes the lines of code of the file version before the
commit. Files that will be removed during the commit
are colored red; files boxes that will be added during the
commit are not depicted at this stage, only their names are;
files that are modified are color-coded: They are light green
if they grow during the commit and light red if they shrink.

LOC pre-commit

fileVersion 1A

D

M

R

M

M

Pre-Commit

fileVersion 2

fileVersion 3

fileVersion 4

fileVersion 5

fileVersion 6

Lines of Code

LOC pre-commit

fileVersion 1A

D

M

R

M

M

Prologue

fileVersion 2

fileVersion 3

fileVersion 4

fileVersion 5

fileVersion 6

Lines of Code

LOC pre-commit

fileVersion 1A

D

M

R

M

M

Corpus

fileVersion 2

fileVersion 3

fileVersion 4

fileVersion 5

fileVersion 6

Lines of Code

LOC pre-commit

fileVersion 1A

D

M

R

M

M

Epilogue

fileVersion 2

fileVersion 3

fileVersion 4

fileVersion 5

fileVersion 6.1

Lines of Code

LOC pre-commit

fileVersion 1A

D

M

R

M

M

Post-Commit

fileVersion 2

fileVersion 3

fileVersion 4

fileVersion 5

Lines of Code

fileVersion 6.1

Repository Mining

User selects one or more*
commits to animate

* a contiguous sequence of
commits can be aggregated

into a “digest” animation

Files added

Files modified

Files deleted

Files renamed

Commit Selection Commit Decomposition Animation Composition

t

P
re
-c
o
m
m
it

P
ro
lo
g
u
e

C
o
rp
u
s

E
p
ilo
g
u
e

P
o
st
-c
o
m
m
it

Interactive Animation Viewer1 2 3 4 5

GitHub Commits

Fig. 1. Overview of the approach.

2) Prologue. This stage is dedicated to showing the appear-
ance of newly added files during the commit, using for
each one of them a fade-in effect. This allows users to
understand at one glance which files are new. The newly
added files are color-coded as green bars, their length is
kept to a minimum value, as their growth will be depicted
during the main corpus stage.

3) Corpus. This is the main stage of the animation, and takes
up most of the time. Files that grow or shrink because of
the commit, grow/shrink correspondingly. Files which are
changed but do not grow or shrink (i.e., lines are substi-
tuted) are depicted as “activated” bars, following a fading
color scheme going from grey (only 1 line is substituted)
to deep blue (all lines are substituted), depending on how
many lines within the files have been touched.

4) Epilogue. This stage is dedicated to showing the disappear-
ance of files deleted during the commit, using for each one
of them a fade-out effect. This allows users to understand
at one glance which files are gone. For renamed files, this
stage will fade out the old and fade in the new name.

5) Post-Commit. This stage visualizes the situation of the
files participating to the commit after the commit has been
performed. Only the names of deleted files are visible; the
length of each file bar represents now the lines they possess
after the commit, the colors still denote what type of change
the files have experienced due to the commit.
The duration of an animation and its phases can be set by

the user. Experience values are 5-10 seconds for the whole
animation, most of which is taken up by the corpus.

C. Interactive Animation Viewer

The animation is fed to a tool we implemented, which
allows users to pick the commit they want to animate, and
offers several means to interact with the animation, such as
pausing, rewinding, stepping, etc. Moreover, it provides a one-
click direct access to the GitHub diff viewer pertaining to
a particular file version. The Viewer has additional features,
such as exporting the animation as a movie file or as a
set of stills (sets of pictures). Lastly, the viewer offers the
modification of animation-specific parameters, such as frame
rate and animation duration.

IV. USING ANIMATIONS TO UNDERSTAND COMMITS

Using a concrete example taken from JetUML2, we illustrate
how we use animations to understand commits. Our tool
depicts an animation as an interactive “movie”, which can be
paused, rewound, etc., and also each entity can be inspected
at any time. This is difficult to illustrate in a paper, but can
be viewed as YouTube video (link included in the caption of
Figure 2), while here we decompose the animation into a set
of frames3, which we use for the discussion.

A. Commit Animation – An Example

Figure 2 pictures the commit 25299434 and the commit
message is “Move methods from ViewerUtils. Methods in
ViewerUtils belongs either to ViewUtils or to DiagramViewer.
This commit moves the method to their better location and
deletes class ViewerUtils”.

Since no file was added, pre-commit and prologue phases
are identical. While 2 files grow (DiagramViewer.java, ViewU-
tils.java), one gets deleted (ViewerUtils.java) shrinking to its
minimum size and fading out at the end of the epilogue phase
(frames 3-6). As the commit message claims, the content of
ViewerUtil.java was moved into the files that grow. This lead
to resolving dependencies in all the other files, whose bars
change color according to the magnitude of the refactoring
(yellow and blue).

V. PRELIMINARY EVALUATION

We performed a preliminary evaluation, also to collect
feedback, by exposing single commit animations to several
people (developers and PhD students). Our goal was to observe
and discuss with them what they could understand about
the commits under investigation simply by glancing at the
animations. The commit references are as follows:
• Commit 4612af4 – December 12, 2017 – “Add basic

code/decode to JSON”;

2§ See: https://github.com/prmr/JetUML
3We only show main frames; the animation is composed of many more

frames, whose number depends on the settable animation duration and the
desired frame rate. For example, a 5 seconds animation at 30 FPS will generate
a total of 150 frames.

4§ See: https://github.com/prmr/JetUML/commit/2529943

https://github.com/prmr/JetUML
https://github.com/prmr/JetUML/commit/2529943

DiagramCanvas.java

DiagramViewer.java

SelectableToolButton.java

SelectionModel.java

SequenceDiagramViewer.java

ViewUtils.java

ViewerUtilities.java

0 44 89 134 179 224

DiagramCanvas.java

DiagramViewer.java

SelectableToolButton.java

SelectionModel.java

SequenceDiagramViewer.java

ViewUtils.java

ViewerUtilities.java

0 44 89 134 179 224

DiagramCanvas.java

DiagramViewer.java

SelectableToolButton.java

SelectionModel.java

SequenceDiagramViewer.java

ViewUtils.java

ViewerUtilities.java

0 44 89 134 179 224

DiagramCanvas.java

DiagramViewer.java

SelectableToolButton.java

SelectionModel.java

SequenceDiagramViewer.java

ViewUtils.java

ViewerUtilities.java

0 44 89 134 179 224

DiagramCanvas.java

DiagramViewer.java

SelectableToolButton.java

SelectionModel.java

SequenceDiagramViewer.java

ViewUtils.java

ViewerUtilities.java

0 44 89 134 179 224

DiagramCanvas.java

DiagramViewer.java

SelectableToolButton.java

SelectionModel.java

SequenceDiagramViewer.java

ViewUtils.java

ViewerUtilities.java

0 44 89 134 179 224

DiagramCanvas.java

DiagramViewer.java

SelectableToolButton.java

SelectionModel.java

SequenceDiagramViewer.java

ViewUtils.java

ViewerUtilities.java

0 44 89 134 179 224

DiagramCanvas.java

DiagramViewer.java

SelectableToolButton.java

SelectionModel.java

SequenceDiagramViewer.java

ViewUtils.java

ViewerUtilities.java

0 44 89 134 179 224

1

2

3

4

6

8

7

5
Pr
e-
Co

m
m
it

Pr
ol
og

ue
Co

rp
us

Co
rp
us

Co
rp
us

Co
rp
us

Ep
ilo

gu
e

Po
st
-C

om
m
it

Fig. 2. JetUML – Feb 6, 2022. Å Commit animation video: https://youtu.be/5-7ZNMNCDAI

• Commit 2529943 – February 6, 2022 – “Move methods
from ViewerUtils. [. . .]”.

The feedbacks we collected indicated that the commit
animations, if compared to the corresponding textual diff, are
intuitive and allow for a quick summary of the changes of
each file version tracked by the commit.

The length of the bars was readily matched to the lines of
code of file versions – the ruler at the top of the visualizations
aided in this regard. Also, the metaphor of growing and
shrinking bars was effortlessly identified with files where lines
of code were added or removed.

The color mapping was simple to comprehend: It mimics
colors used by Git and the GitHub web interface to display
diffs. Although the color(s) of files that changed but did not
grow or shrink (whose bars follow a fading color scheme)
differ from those used in other interfaces/tools, most of the
people could still identify them as just modified files.

The objective behind the interactive animations we propose
is to give a means to quickly summarize all the changes
that occurred in a commit and interact with each of them:
Interaction is essential, indeed. While the animations are
intuitive, they lack fine-grained information that is contained
in textual code-diffs. In light of this, our visualizations allow
to inspect the raw content of the file versions and browse the
textual diff on the GitHub web interface. The latter can be
reached through a click on each bar.

The feedbacks indicate that the ability to browse and interact
with each file version was deemed valuable, as it links the
intuition of the nature of the change to the detailed and logical
change provided by the text-based diff. Also, some of the
people observed that animations can be beneficial to identify
relationships between file versions, e.g., when pieces of code

are removed from one file and added to another – as it happens
in the example commit (Section IV-A).

Overall, the feedbacks showed that the visual metaphor
augmented with animation, albeit simple, makes the compre-
hension of the file versions animations intuitive. Also, what
struck most of the people was that they were capable of
understanding the essence of commits without needing to look
at source code and/or textual diff representations.

VI. REFLECTIONS ON THE IDEA

The idea we presented is in its early stages. The purpose of
our approach was to supply a means to understand commits
using animated and interactive visualizations: We aimed at
providing a file-based granularity summary of the overall
changes using a simple yet intuitive visual metaphor. In line
with this purpose, the feedback we have collected has been
generally positive. Yet, much future work lies ahead of us.

(Comparative) Evaluation. The anecdotal evidence that the
approach shows promise is not enough to make any claims of
substance. In the near future we plan on running a controlled
experiment to perform a comparative evaluation. The baseline
is the de facto standard diff representation offered by GitHub.
The variables we want to control are time (can people save
time understanding a commit with the help of animations?)
and accuracy (does the use of animations lead to a better
understanding of the intricacies of a commit, or is there an
upper bound of what can be represented with the help of
animations?).

Color Schemes. The colors we have used to encode the
properties of the files involved in a commit are currently hard-
coded. As there is no semantics in a particular color, we will
implement the possibility of user-settable color schemes.

https://youtu.be/5-7ZNMNCDAI

A

B

Fig. 3. The visual and animated representation is interactive (A). The textual diff representation provided by the GitHub interface (B) is accessible through
a click on the bars at any step of the animation. The details of the diffs can be inspected by clicking on the glyphs. At the top the last state of the animation
of the commit 2529943 (A); at the bottom the textual counterpart (B). Å See how to interact with the animations: https://youtu.be/0-SMccwmbAQ

Refining the Visualizations. The visual representation of
a file is currently overly simple, namely a bar. We plan on
extending the visual metaphor in several ways:

• Taking inspirations from the SeeSoft tool [40] and the
Microprints presented by Ducasse et al. [41], the idea is
to represent the single line changes within the files [42].
For example, this would allow to understand where in a
file lines are added, deleted, or substituted.

• In their current state, the bars represent an overview of
the changes occurred, i.e., when files change in more
than one way our visualization represents a summary
of the changes. For instance, when files that both in-
creased/decreased in size and modified lines of code, only
the change of size is represented. Similarly, when lines
of code are both added and deleted, the delta between
insertions and deletions is depicted. We will include
the possibility to watch at more comprehensive (than
summary-based) animated diff.

Commit Digests. One promising direction we are currently
exploring is the possibility to animate a sequence of commits
and commits related to each other, for example those part
of the same pull request. The first scenario, involving the
sequence of commits, would allow the answering of questions
such as “what happened yesterday/last week?”, while the
second scenario might provide a more comprehensive means to
understand a pull request, which is a cumbersome activity. The
same scenario could also be interesting for supporting code
review activities, which naturally feature a comprehension
part.

Enabling Selective Analysis. The visualization we offer
depicts all the file versions in a commit and animates them
from their prior state to the one tracked by the commit under
observation. Another interesting avenue is the possibility to
select a subset of file versions, e.g., focusing exclusively on
modified files. Otherwise, given all the file versions in a
commit, it may be useful to select all commits that impacted
those file versions, to watch and interact with their animated
histories. Similarly, developers may benefit from selecting
specific packages or components and interacting with the ani-
mated histories of the file versions included in the selection.

VII. CONCLUSION

The comprehension of evolving software systems remains
a complicated problem, as it deals with understanding com-
plex changes which are often difficult to unravel. Not only
is the data heterogeneous and difficult to handle, but it is
also imprecisely documented, e.g., with poor quality commit
messages [43] or pull request that appear not merged despite
being merged [44]. The current state of the art is to look at
the changes using diff-based textual representations, which is
rather reductive, since source code is more than just text [35].

Our approach takes a fresh perspective on how software
changes can be seen and understood. The approach needs
certainly more refinement, as we presented in the previous
section, but the initial results based on the idea we proposed
show considerable promise.
Å Playlist of referenced videos: https://www.youtube.com/

playlist?list=PL9LiNpHT0QqhHPnZUp1pTiy7LGEeUabiA

https://youtu.be/0-SMccwmbAQ
https://www.youtube.com/playlist?list=PL9LiNpHT0QqhHPnZUp1pTiy7LGEeUabiA
https://www.youtube.com/playlist?list=PL9LiNpHT0QqhHPnZUp1pTiy7LGEeUabiA

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support of
the Swiss National Science Foundation (SNSF) for the project
”INSTINCT” (SNF Project No. 190113).

REFERENCES

[1] R. Minelli, A. Mocci, and M. Lanza, “I know what you did last summer-
An investigation of how developers spend their time,” in Proceedings of
ICPC 2015. IEEE, 2015, pp. 25–35.

[2] M. D. Storey, F. D. Fracchia, and H. A. Müller, “Cognitive design
elements to support the construction of a mental model during software
exploration,” Journal of Systems and Software, vol. 44, no. 3, pp. 171–
185, 1999.

[3] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models:
A study of developer work habits,” in Proceedings of ICSE 2006. ACM,
2006, pp. 492–501.

[4] V. Singh, L. L. Pollock, W. Snipes, and N. A. Kraft, “A case study
of program comprehension effort and technical debt estimations,” in
Proceedings of ICPC 2016. IEEE, 2016, pp. 1–9.

[5] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in Proceedings of ICSE 2013. IEEE, 2013, pp.
712–721.

[6] M. D’Ambros, M. Lanza, and R. Robbes, “Commit 2.0,” in Proceedings
of Web2SE 2010. ACM, 2010, pp. 14–19.

[7] B. Fluri, M. Wursch, and H. C. Gall, “Do code and comments co-
evolve? On the relation between source code and comment changes,” in
Proceedings of WCRE 2007. IEEE, 2007, pp. 70–79.

[8] M. Kajko-Mattsson, “A survey of documentation practice within correc-
tive maintenance,” Empirical Software Engineering, vol. 10, pp. 31–55,
2005.

[9] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do professional
developers comprehend software?” in Proceedings of ICSE 2012. IEEE,
2012, pp. 255–265.

[10] S. Jiang, A. Armaly, and C. McMillan, “Automatically generating
commit messages from diffs using neural machine translation,” in
Proceedings of ASE 2017. IEEE, 2017, pp. 135–146.

[11] P. Loyola, E. Marrese-Taylor, and Y. Matsuo, “A neural architecture for
generating natural language descriptions from source code changes,” in
Proceedings of ACL 2017. ACL, 2017, pp. 287–292.

[12] Y. Huang, Q. Zheng, X. Chen, Y. Xiong, Z. Liu, and X. Luo, “Mining
version control system for automatically generating commit comment,”
in Proceedings of ESEM 2017. IEEE, 2017, pp. 414–423.

[13] C. M. Taylor and M. Munro, “Revision towers,” in Proceedings of
VISSOFT 2002. IEEE, 2002, pp. 43–50.

[14] G. Occhipinti, C. Nagy, R. Minelli, and M. Lanza, “Syn: Ultra-scale
software evolution comprehension,” in Proceedings of ICPC 2023.
IEEE, 2023, pp. 69–73.

[15] J. T. Stasko, “Tango: A framework and system for algorithm animation,”
ACM SIGCHI Bulletin, vol. 21, no. 3, pp. 59–60, 1990.

[16] S. Diehl, “Software visualization,” in Proceedings of ICSE 2005. ACM,
2005, pp. 718–719.

[17] S. Benford, C. Brown, G. Reynard, and C. Greenhalgh, “Shared spaces:
Transportation, artificiality, and spatiality,” in Proceedings of CSCW
1996. ACM, 1996, pp. 77–86.

[18] D. Moody, “The “physics” of notations: Toward a scientific basis for
constructing visual notations in software engineering,” IEEE Transac-
tions on Software Engineering, vol. 35, no. 6, pp. 756–779, 2009.

[19] D. L. Sonnier and S. L. Hutton, “Enhancing visual aids through the use
of animation,” in Proceedings of MSCCC 2004. MSCCC, 2004, p.
155–164.

[20] L. P. Rieber, “Using computer animated graphics in science instruction
with children.” Journal of Educational Psychology, vol. 82, no. 1, p.
135, 1990.

[21] E.-M. Yang, T. Andre, T. J. Greenbowe, and L. Tibell, “Spatial ability
and the impact of visualization/animation on learning electrochemistry,”
International Journal of Science Education, vol. 25, no. 3, pp. 329–349,
2003.

[22] R. L. London and R. A. Duisberg, “Animating programs using
Smalltalk,” Computer, vol. 18, no. 08, pp. 61–71, 1985.

[23] G. Salomon, Interaction of Media, Cognition, and Learning: An Ex-
ploration of How Symbolic Forms Cultivate Mental Skills and Affect
Knowledge Acquisition, 1st ed. Routledge, 1994.

[24] M. Bétrancourt and B. Tversky, “Effect of computer animation on users’
performance: A review,” Le travail humain, vol. 63, no. 4, p. 311, 2000.

[25] T. N. Höffler and D. Leutner, “Instructional animation versus static
pictures: A meta-analysis,” Learning and instruction, vol. 17, no. 6,
pp. 722–738, 2007.

[26] F. Paas, A. Renkl, and J. Sweller, “Cognitive load theory and instruc-
tional design: Recent developments,” Educational psychologist, vol. 38,
no. 1, pp. 1–4, 2003.

[27] W. Schnotz and C. Kürschner, “A reconsideration of cognitive load
theory,” Educational Psychology Review, vol. 19, pp. 469–508, 2007.

[28] J. Sweller, J. J. Van Merrienboer, and F. G. Paas, “Cognitive architecture
and instructional design,” Educational Psychology Review, vol. 10, pp.
251–296, 1998.

[29] S. Berney and M. Bétrancourt, “Does animation enhance learning? A
meta-analysis,” Computers & Education, vol. 101, pp. 150–167, 2016.

[30] L. P. Hattori and M. Lanza, “On the nature of commits,” in Proceedings
of ASE 2008. IEEE, 2008, pp. 63–71.

[31] A. Alali, H. Kagdi, and J. I. Maletic, “What’s a typical commit? A
characterization of open source software repositories,” in Proceedings
of ICPC 2008. IEEE, 2008, pp. 182–191.

[32] K. A. Safwan and F. Servant, “Decomposing the rationale of code
commits: The software developer’s perspective,” in Proceedings of
ESEC/FSE 2019. ACM, 2019, pp. 397–408.

[33] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do software
engineers understand code changes? An exploratory study in industry,”
in Proceedings of FSE 2012. ACM, 2012, pp. 1–11.

[34] M. Codoban, S. S. Ragavan, D. Dig, and B. Bailey, “Software history
under the lens: A study on why and how developers examine it,” in
Proceedings of ICSME 2015. IEEE, 2015, pp. 1–10.

[35] G. Weinberg, The Psychology of Computer Programming, Silver An-
niversary ed. Dorset House, 1998.

[36] E. Fregnan, L. Braz, M. D’Ambros, G. Çalıklı, and A. Bacchelli, “First
come first served: The impact of file position on code review,” in
Proceedings of ESEC/FSE 2022. ACM, 2022, pp. 483–494.

[37] N. Tsantalis, A. Ketkar, and D. Dig, “RefactoringMiner 2.0,” IEEE
Transactions on Software Engineering, vol. 48, no. 3, pp. 930–950, 2020.

[38] D. Spadini, M. Aniche, and A. Bacchelli, “PyDriller: Python framework
for mining software repositories,” in Proceedings of ESEC/FSE 2018.
ACM, 2018, pp. 908–911.

[39] A. Danial, “cloc: v1.92,” Dec. 2021.
[40] S. Eick, J. Steffen, and E. Sumner, “Seesoft-A tool for visualizing line

oriented software statistics,” IEEE Transactions on Software Engineer-
ing, vol. 18, no. 11, pp. 957–968, 1992.

[41] S. Ducasse, M. Lanza, and R. Robbes, “Multi-level method understand-
ing using microprints,” in Proceedings of VISSOFT 2005. IEEE, 2005,
pp. 33–38.

[42] M. Asaduzzaman, C. K. Roy, K. A. Schneider, and M. D. Penta,
“LHDiff: A language-independent hybrid approach for tracking source
code lines,” in Proceedings of ICSM 2013. IEEE, 2013, pp. 230–239.

[43] Y. Tian, Y. Zhang, K.-J. Stol, L. Jiang, and H. Liu, “What makes a
good commit message?” in Proceedings of ICSE 2022. ACM, 2022,
pp. 2389–2401.

[44] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining GitHub,” in Proceedings
of MSR 2014. ACM, 2014, p. 92–101.

	Introduction
	Related Work
	Approach
	Data Preparation
	Animation Composition
	Interactive Animation Viewer

	Using Animations to Understand Commits
	Commit Animation – An Example

	Preliminary Evaluation
	Reflections on the Idea
	Conclusion
	References

