
Cel – Touching Software Modeling in Essence

Remo Lemma, Michele Lanza, Andrea Mocci
REVEAL @ Faculty of Informatics - University of Lugano, Switzerland

Abstract—Understanding a problem domain is a fundamental
prerequisite for good software design. In object-oriented systems
design, modeling is the fundamental first phase that focuses on
identifying core concepts and their relations. How to properly sup-
port modeling is still an open problem, and existing approaches
and tools can be very different in nature. On the one hand,
lightweight ones, such as pen & paper/whiteboard or CRC cards,
are informal and support well the creative aspects of modeling,
but produce artifacts that are difficult to store, process and reuse
as documentation. On the other hand, more constrained and
semi-formal ones, like UML, produce storable and processable
structured artifacts with defined semantics, but this comes at the
expense of creativity.

We believe there exists a middle ground to investigate that
maximizes the good of both worlds, that is, by supporting software
modeling closer to its essence, with minimal constraints on the
developer’s creativity and still producing reusable structured
artifacts. We also claim that modeling can be best treated by
using the emerging technology of touch-based tablets. We present
a novel gesture-based modeling approach based on a minimal
set of constructs, and Cel, an iPad application, for rapidly
creating, manipulating, and storing language agnostic object-
oriented software models, which can be exported as skeleton
source code in any language of choice. We assess our approach
through a controlled qualitative study.

I. Introduction

Software design is essentially modeling [1], a fundamental
step in the software development process [2]. Modeling consists
of the identification of the core concepts of the system to
be built and the relationship between them. The produced
model is a simplified representation of reality, which only
includes information strictly serving the purpose at hand [3].
When performed incorrectly, modeling negatively influences
the quality of the resulting system [4].

Like any other software development activity, modeling
needs support of methodologies and tools. Different approaches
to support modeling can be significantly different in nature,
for example by considering their notation or the modeling
features and constraints they impose on the users. Among the
possible classifications, one can identify informal and semi-
formal approaches, each one with advantages and drawbacks.

Informal modeling, done on top of one’s head, on paper,
on a whiteboard, or using methodologies such as CRC Cards
[5], [6], sets few limits to the creative process. This produces
unconstrained or minimally constrained artifacts (e.g., drawings,
CRC cards). These artifacts do not have a precise semantics,
and moreover they are difficult to process, store, share, and
maintain. Maintenance of design models is crucial, since design
drift –a root cause of software aging [7]– is unavoidable in
real-world systems [8].

A more formalized means of modeling is instead expressed
using diagrammatic visual notations such as UML, the unified

modeling language [9]. This type of modeling is mostly
performed with UML editors, such as ArgoUML or UML
Lab1, which support knowledge sharing and reduce maintenance
problems. Compared to artifacts produced in informal modeling,
UML has a heavy notation, with a highly structured and semi-
formalized specification. Because of that, we claim that UML
editors inhibit the creative nature of modeling: One spends
more energy in reproducing the right steps for creating correct
diagrams rather than in exploring possible design alternatives.

We believe that the essence of modeling lies in between
these two classes. A trade-off approach is needed, one that
empowers developers to rapidly craft persistent and maintain-
able models, whose structure is adequate to effectively support
modeling, and simple enough to stay lightweight and avoid
negatively affecting creativity.

Touch-based tablet computers (such as the iPad2) are a
middle ground that can combine the best of both semi-formal
and informal modeling: They stimulate a playful environment
similar to pen & paper/whiteboard, their portability enables
modeling in any setting and environment, and their computa-
tional power supports processing, storage, and maintenance of
the produced models.

Instead of using tablet computers as mobile whiteboards,
or porting existing UML editors to touch-based devices, we
present Cel, an iPad application, based on a minimal matrix-
based visual language, to create and manipulate object-oriented
models. Cel uses the available touch-and-gesture-based means
to design software models, which can be stored, exported, and
used to generate skeleton source code in any language of choice.
The contributions are:

1) A novel object-oriented modeling methodology, based on
a minimal set of constructs, to capture the essence of
modeling.

2) Cel, a gesture-based iPad application to create, store
and manipulate language-agnostic models, exportable as
skeleton code. Cel uses a custom visual metaphor designed
to support the creative modeling process.

3) A controlled qualitative study of our modeling methodol-
ogy and of our tool.

Structure of the paper. In Section II we present our
approach with its core elements, we illustrate Cel’s matrix-
based visual metaphor and its semantic zoomable interface, and
we explain Cel’s gesture-based interactions. In Section III we
assess Cel through a controlled qualitative study. In Section IV,
we discuss the closely related work and the projects that inspired
our work. In Section V we take a critical stance towards our
own work. Finally, in Section VI we summarize our work and
reflect on the future of our research.

1http://argouml.tigris.org/ http://www.uml-lab.com/
2http://www.apple.com/ipad/

http://argouml.tigris.org/
http://www.uml-lab.com/
http://www.apple.com/ipad/

U
IW

indow

768 x 1024

Save and go to projects index Entities

Selected Entities Undo / RedoRelationships

Export

Fig. 1: Cel modeled in Cel on the iPad.

II. Modeling with Cel
Figure 1 depicts Cel, the iPad application [10] we developed

to support our modeling methodology; this paper focuses on
the conceptual design and vision of Cel. It is freely available at
http://cel.inf.usi.ch. Cel supports the essential means
to model systems, providing a visual vocabulary to create and
manipulate models composed of interconnected entities, which
in turn can include other entities. Cel lacks language-specific
features and produces language agnostic models. Interactions
are performed using gestures, minimizing keyboard- and button-
based interactions. The intensive use of gestures introduces
a learning phase, after which the user becomes proficient in
interacting with the model under construction.

Figure 1 shows Cel modeled in Cel itself. The main view
of Cel depicts the model as a set of interconnected matrix cells.
The model elements are laid out automatically. To mitigate the
problem of the small screen size and of the limited amount
of information that can be displayed, Cel supports semantic
zooming. Users can act on the matrix by instantiating new
entities or relationships, manipulating the existing ones, and
create a selection to focus on a group of elements to act on it.

Intermezzo. The rest of this section will explain the phi-
losophy and core elements of Cel (Section II-A), its zoomable
interface (Section II-B), the user interaction (Section II-C), and
skeleton code generation (Section II-D).

Before detailing Cel, we suggest the reader to look at a
video we have put together to illustrate it in action. We argue
that by first watching the video all subsequent arguments will
be easier to understand and assimilate. The video is located at
http://youtu.be/R838PtRuGts.

A. Cel Philosophy and Core Elements

Cel is a novel methodology that tries to capture the
essence of object-oriented modeling: Cel aims at an equilibrium
between the offered modeling features and the expressiveness
implicitly required by modeling tasks. In this sense, Cel offers
a minimal class of entities and relationships between them,
structured in a matrix-based layout.

Matrix. While modeling with a tool, users are often forced
to perform operations like layout adjustments that are not related
to the design process. To mitigate this problem we developed a
dedicated matrix-based visual metaphor. As depicted in Figure 1,
model entities are organized in a matrix separated by a grid:
Its rationale is to create a simple, minimalistic interface. It
introduces a constrained layout, as opposed to UML editors
and visual IDEs which use free layouts, allowing users to
place entities wherever they like. Free layouts do come with
a price: Without positioning and size constraints, the user
has to personally care about the layout, or the application
has to integrate a layout engine. While automatic layouts, or
techniques like snap-to-grid, seem the most practical solution,
they may require the use of non-trivial algorithms such as
corner stitching [11], with often unsatisfactory results [12].
The matrix-based approach constrains the user’s freedom, but
users can still freely place entities inside any of the cells,
providing an intrinsic order and a uniform visual appearance.
Moreover, adding/deleting/moving elements does not affect the
positioning and the visual appearance of the other entities and
does not introduce additional visual noise.

Entities. Cel’s main elements are classes. Each named cell
of the main matrix is a class, which can contain behavioral

http://cel.inf.usi.ch
http://youtu.be/R838PtRuGts

entities (i.e., methods) and state entities (i.e., fields), represented
as embedded cells.3 We believe these few entities suffice to
model the essence of a system. Other entities (e.g., abstract
classes, interfaces, packages, etc.) are useful in more advanced
stages of system design. We do not deem them significant for
the first stages of conceptual modeling, where one wants to
deal only with a minimal set of basic concepts, and where more
specialized entities would simply overcomplicate the model.
Figure 2 shows how Cel depicts each entity type.

(a) Class (b) Method (c) Field

Fig. 2: Entities in Cel. Bottom-right: selected entities.

The color indicates the kind of entity being manipulated.
We opted for simplicity: a mildly patterned square with a label.
As claimed by Mullet et al., elegant solutions can be achieved
with an absolute minimum of components [15]. Figure 2 also
shows how selected entities look. The blue overlay mitigates the
visual difference among entities, but exploits color similarity,
which overcomes the effect of proximity from a cognitive point
of view [16] and makes selection appear as one single element.

Typing information for methods and fields are optional and
can be used to refine important entities and for which additional
details should be specified. When creating methods, (optionally
typed) parameters can be specified in the signature using a Java-
like notation (e.g., addElement(Element element)). When
adding an entity to a class, Cel checks whether it has parameters
or () at the end of its name and, if so, it creates a method,
otherwise a field. Parameters are encapsulated inside the method
and can be managed in a separate, list-based, visualization.

Relationships. Cel relationships can be instantiated at the
same level of abstraction (i.e., classes with classes, methods and
fields with methods and fields). All relationships are directed
and can represent either inheritance or a generic connection.

Inheritance enables modeling of hierarchies that, when used
in conjunction with subtyping, can give a better understanding
of a software system domain, and is also valuable to refine
entities. Cel supports multiple inheritance, often excluded
in modern object-oriented languages due to the conceptual
difficulties it introduces [17]. However, this feature can be used
to model multiple roles of the same entity (e.g., a PhD student is
a university employee and a student). Inheritance relationships
are antisymmetric (i.e., if class A inherits from B, B cannot
inherit from A) and they cannot create loops. The direction
indicates that the source of the relationship is a subclass of the
target. Since Cel supports only a single class type, it does not
differentiate between different kinds of inheritance, as in UML
realization and generalization.

UML also offers other types of relationships (e.g., associa-
tion, composition). This distinction often indicates implementa-
tion constraints, or specialized entity relationships. We argue it

3Another option is to treat fields and methods as a single entity, as in Self [13].
We chose to adopt the original idea of OOP, as described by Riel [14].

unnecessarily complicates the early stages of modeling: Thus,
we treat all relationships other than inheritance as generic. The
modeling role of a generic relationship is to express a strong
link between two entities (e.g., a class calling a method of
another class), or to signal a relevant conceptual relationship
(i.e., two classes are related, but the designer has not yet decided
how). Therefore, as opposed to inheritance relationships, generic
relationships are unrestricted. Constructing models with generic
relationships leaves more freedom in the implementation phase,
reducing the chances of source code drifting apart from the
model. To display relationships and to avoid edges crossing
entities, we exploit the matrix grid (Figure 3). Relationships are
always visible. The difference between inheritance and generic
relationships is shown only for selected entities (Figure 3).

Inheritance Relationship

Generic Relationship

Markers

Selected entity

Relationship involving
unselected entities

Fig. 3: Cel depicting relationships for a selected entity.

When related entities are not selected, links are displayed
with a uniform light color. When selected, inheritance rela-
tionships are colored in pink and generic relationships in blue.
Displaying details only for the selected entities reduces visual
clutter, presenting the details on the entities in focus. The
direction of relationships is visible when the user focuses
on entities: Once they are selected, a marker repeatedly
moves along their lines, from source to target, to show the
direction. Paths are computed using Dijkstra’s algorithm [18].
Figure 4 shows how grid channels grow according to how many
relationships pass through the channel.

(a) 2 relationships

3 relationships

(b) 3 relationships

Fig. 4: Channel size depends on the number of relationships.

Enlarging the grid channels has two main benefits: (1) the
paths of all relationships are always intelligible, and (2) users
can spot the entities involved in many relationships, as they
have larger channels around them. Since enlarging the channels
might introduce visual noise when a user is not interested
in relationships, Cel adapts the channel width only to the
relationships that are currently displayed. This avoids situations
where large channels are rendered, but no relationship is actually
displayed. We tuned the weight calculation of the Dijkstra
algorithm to limit the growth of the channels: The trade-off is
between channel width and short paths.

(a) Birds-Eye (b) Overview

(c) Edit

(d) Details (e) Internals

Fig. 5: The five semantic levels supported by Cel.

B. The Zoomable Interface

Applications for tablets must deal with a small screen size.
Cel overcomes this issue by treating the matrix as a semantic
zoomable interface. When users zoom in, they progressively
unveil details about entities, as well as new operations and
actions. We opted for a semantic zoom because we argue that
when users zoom out considerably, they focus on obtaining
the “big picture” of the system, not the details. Furthermore, if
we would allow users to perform complex operations on small
entities, this might pose the risk to induce errors, as the entities
would be difficult to distinguish and manipulate. Overall, we
follow the principle that the quantity of information displayed
has to be proportional to the available space, avoiding the
introduction of visual clutter, one of the most common defects
affecting modern user interfaces [15].

Cel supports five types of semantic levels (see Figure 5):

(a) Birds-Eye: Entities appear like in Figure 5a, where the
names are not displayed. The aim is to provide users with the
“big picture” of the model. Through the grid channels, users
deduce which entities are involved in more relationships and
see how the elements have been organized in the matrix. At
this level, users can only pan and zoom the matrix.

(b) Overview: Cel shows entities names and provides the
following new operations: context menus, creation/deletion of
entities and relationships, selection creation and manipulation
and the possibility to jump into the internals semantic level.

(c) Edit: This level, which is denoted by the visual
cue of underlining the label, enables complex gesture-based
interactions that need a considerable precision. For example, it
is possible to directly edit the entity name using gestures.

(d) Details: At this zoom level an entity reveals its
composite structure: The embedded content (i.e., methods and
fields for classes, and parameters for methods) becomes visible.
Figure 5d shows an example in which the internals of three
classes are displayed. This view shows a close overview of
what is inside an entity without having to zoom in completely
(thus losing the context). The internal content is read-only, and
users can only inspect the internals by panning and zooming
into the inner view.

(e) Internals: This level is accessed when the user explicitly
zooms into an entity by double tapping instead of using the
standard zoom gesture. The top left corner features a menu
tag displaying the name of the zoomed entity. Also the outer
neighbors are visualized to preserve the context. The concept
of the zoomable interface is reapplied, and the five semantic
zoom levels can be again exploited.

C. Interaction

Users should be able to focus only on the current task
without any major interruption or disturbance [19]. To follow
Raskin’s guideline, we adopted two main design rules:

1. No confirmation dialogs. These messages plague users
with tedious questions, eliciting often the same answers. This
undermines their utility: The notification that an irreversible
operation is going to be performed. According to Raskin, “Any
confirmation step that elicits a fixed response soon becomes
useless” [19]. To create a confirmation-free UI, we introduced
a full undo/redo system that captures any relevant event.

2. No waiting times. Waiting time is wasted time, in-
troducing frustration and damaging users’ attention. Waiting
times are related to costly operations (in terms of time and/or
resources) or to locked resources (i.e., resources which cannot
be concurrently accessed by others). We designed Cel to lock
as few resources as possible, allowing users to continue to
interact with the entire application except for locked resources
(e.g., a project being saved), and all the costly operations are
also deferred to separate threads to cut waiting periods.

Touch-based tablet computers do not come with pointing
devices such as the mouse in standard desktop computers
(unless one attaches an external device). Moreover, the digital
keyboard needs training to be used proficiently. Widget-based
UIs (e.g., toolbars and buttons) also have significant drawbacks
(e.g., toolbars often have small icons, thus degrading usability)
and it is hard to create fully interactive applications using only
such means. We decided to minimize widget- and keyboard-
based interaction and base Cel’s interactions on the typical
input technology of touch-based devices: Gestures.

Gestures are movements/actions captured on a (multi-)touch
sensing surface. One can create complex gestures, or rely on
simple standard gestures provided by the operating systems
running on touch-based devices (e.g., tap, pinch, etc.). Gestures
are a powerful mean to create interactive applications, but
the more gestures are employed, the more the usability of an
application depends on them, especially on the ability of users

in utilizing them. Even simple gestures can become problematic
for people not used to touch-based interfaces. This interaction
technique introduces a learning phase, necessary to become
familiar with these new devices, to get used to the sensitivity
of the gestures, and to acquire a sufficient experience level.

In mapping gestures and operations we minimized the use
of modes [19]. Modes arise from the use of the same gesture
for different purposes, depending on the state of the system.
However, the interaction capabilities of touch-based devices are
limited, and gesture reuse is unavoidable. We adopted Norman’s
rule that if modes have to be used, errors can be limited with
clear feedback on the state of the system [20].

Furthermore, to enhance usability, we assigned gestures
involving more than 2 fingers to actions implying rapid and
simple movements. Cel’s gestures are summarized in Figure 6.

Single Tap
Create new entity.
Open a context
menu for an entity
Double Tap
Zoom into an entity

Pinch
Zoom in/out in the
matrix. Zoom out
from an inner matrix

Three-finger Pinch
Zoom out from an
inner view

Two-finger Pan
Pan the matrix. Move
a selection of entities

Cross
Delete entities

Line
Edit the name of an
entity. Create/delete
relationships
Shape
Create/manipulate a
selection

Three-finger Down
Swipe
Clear the selection

Fig. 6: Summary of the gestures used in Cel

Single Tap: This gesture indicates that the user wants to
do something. We have assigned it the fundamental role of
instantiating the creation of a new entity when an empty cell
in the matrix is tapped. If instead, one taps on an existing
entity, its context menu opens up, which contains actions which
involve non-standard gestures (e.g., delete or rename action); it
is intended for users unfamiliar with gesture-based interaction.

Double Tap: We keep this gesture consistent with its
behavior in iOS: bound to zoom-in/zoom-out. The double tap
let users zoom into an entity, showing the internals zoom level.

Pinch: The pinch gesture is well-known to most touch-based
device users. It is used to perform zoom operations and we
have reused the same concept also in Cel . Additionally, we
have added a secondary feature to this gesture, allowing users
to zoom out from the internals of an entity when the minimum
zoom level is surpassed.

Three-finger Pinch: This custom gesture allows to rapidly
zoom out from entities without the need of zooming out long
enough to surpass the minimum zoom factor.

Two-finger Pan: Panning is associated with the concept
of movement. We adopted a two-finger gesture to move our
view, discarding the usual simpler one-finger pan, since it would
conflict with other gestures (i.e., shape, cross and line gestures).

If the user starts a two-finger pan gesture without entities
selected, the entire matrix is panned, otherwise the user moves
the selected entities. This can be considered a mode, yet the
selected entities are clearly highlighted (i.e., we provide visual
feedback) and the overall action associated to the gesture,
i.e., moving, remains consistent. When panning a selection, as
shown in Figure 7, we add an overlay as a visual cue to signal
whether the movement is legal (green) or illegal (red).

(a) Invalid (b) Valid

Fig. 7: Move of a selection of entities.

For legal movements, entities are placed at the new position
and all the connected relationships are automatically rewired.
For illegal movements, entities return to their original site.

The matrix also features auto-pan, that can be exploited
while panning the matrix or while repositioning selected entities.
To activate auto-pan, users put their fingers at the borders of
the screen, and the application will automatically start to pan
the matrix in the desired direction. Multiple directions can be
combined at once (e.g., up and left, down and right, etc.).

Cross: This is a custom gesture to delete entities. A cross
drawn over multiple entities deletes them all. In iOS devices
the deletion is usually accomplished with a (slow) combination
of gestures and buttons. We claim that a cross gesture can be
naturally mapped to the concept of erasing content.

(a) Create generic relationship (b) Delete relationship(s)

(c) Create inheritance (d) Edit entity name

Fig. 8: Line gesture operations.

Line: The line gesture accomplishes different tasks (sum-
marized in Figure 8): handle relationships (i.e., creation and
deletion) and allow the renaming of entities.

To create a relationship the user draws a line from a selection
(i.e., the source elements) to a target entity. Each element in
the selection instantiates a relationship to the target element. To
distinguish between the creation of inheritance and generic
relationships, we designed two ad-hoc line-based gestures,
shown in Figure 8a and Figure 8d. The inheritance creation
gesture is a straight line with a closed shape at the end (i.e.,
like a lasso) which encapsulates the center of the targeted entity.
The generic relationships creation gesture is a simple line. They
are similar enough to recall the same concept (i.e., relationship
instantiation), yet they are still easily distinguishable.

To delete relationships, we adopt a similar gesture to the one
used to delete entities (i.e., the cross). The selected approach
is illustrated in Figure 8b. Since relationships are drawn as
polygonal chains of straight lines, the line drawn with the
gesture intersects the visualization forming a cross, as desired.
Since details on relationships are available only for selected
entities, to delete a relationship one of the involved elements has
to be selected. To avoid conflicts we give priority to relationship
creation over deletion if both gestures activate at the same time.

The last interaction type that involves the line gesture is the
renaming action. As depicted in Figure 8c, by striking the label
of an entity, one can then edit its name. Because the scope of
this gesture is limited to the rectangle of an entity, it does not
conflict with the other line gesture usages.

(a) Add entries to the selection (b) Deselect entities of the selection

(c) Update the selection

Fig. 9: Shape gesture usage.

Shape: The shape gesture is probably the most powerful
gesture we created. The possibility to draw any kind of closed
shape to activate this gesture mitigates problems related to
proficiency and ability in drawing: No extreme precision is
needed. This gesture is the last one to be activated: If no
other gesture is compatible with the movement, the shape is
automatically closed, making this gesture even faster to perform
(i.e., users do not have to manually close the shape).

Each shape gesture acts on the global selection that is
assigned to each matrix view. The two trivial cases are shown
in Figure 9a and Figure 9b. In the former, the user can add
deselected entities to the selection. In the latter, the user
deselects the selected entities that are contained in the shape.

Figure 9c shows a more complicated and controversial case,
in which the shape drawn by the user surrounds both selected
and unselected entities. We had two options to handle this case:
Implementing the shape as a toggle (i.e., invert the selection)
or treating the entities contained in the shape as a single group.
We opted for the second strategy. Therefore, as we treat the
elements included in the shape as a single group, if the group
is all selected it gets deselected, otherwise all the entities are
selected. In the example presented in Figure 9c, the Course
entity is added to the selection already including Student.

Three-finger Down Swipe: This gesture clears the entire
selection (i.e., deselects all the entities). This gesture can be
performed rapidly and metaphorically replicates a sweep.

D. Skeleton Code Generation

To exploit models after they are produced, Cel features a
code generation engine that can be employed as a first guideline
to implement the actual system. To export the skeleton code of
a Cel model, we devised language templates (to be filled with
language-specific constructs), which define the rules to export
the skeleton source in any language of choice. Cel natively
supports three languages: C++, Java and Objective-C. Listing 1
shows an example of a language template.

Listing 1: Java method export definition
” method ” : {

” e x p o r t ” : ”\ n\ t {RETURN TYPE} {NAME} ({PARAMETER LIST }) { } ” ,
” d e f a u l t R e t u r n T y p e ” : ” vo id ” ,
” p a r a m e t e r L i s t ” : {

” ∗ ” : ” {PARAMETER TYPE} {PARAMETER NAME} ” ,
” s e p a r a t o r ” : ” , ” , ” d e f a u l t T y p e ” : ” O b j e c t ” } }

Each entity has unique tags (encapsulated between {}),
which can be used to refer to entity parameters, like the return
type, or the name and parameter list of the method. Moreover,
for each entity there is a set of configurable parameters to
specify language-specific aspects, like the default type for a
method with no return type, or the formal parameter separator.
Templates can also contain stylistic components (e.g., \n, \t),
which can be used to create readable output.

III. Evaluation: Controlled Qualitative Study

Given the nature of Cel, a comparative evaluation with
existing work is not feasible, as there is no directly related
work. Also, we discarded a quantitative comparison between
Cel and a UML editor because it would be an apples and
oranges comparison, since Cel does not strive to be a UML
editor. We opted for a controlled qualitative study, since our
goal is to assess the quality of our design choices and to obtain
feedback on Cel’s viability as a novel modeling approach.
Qualitative studies attempt to interpret a phenomenon based
on the explanations that people express during the study [21].
Such evaluations can be precious while studying new products
to identify relevant variables to be further investigated [22].
Thanks to the richness of the data it is possible to find answers
to the questions of how and why things happen, and to find out
valuable latent and non-obvious issues [23]. Our study follows
the process described by Wohlin et al. [24].

A. Planning

Context selection. Because Cel is a new product, evaluating
it by solving tasks in real-world projects would have comported
too many risks. We opted for a controlled environment involving
students, with tasks that mimic real-world situations to gather
meaningful feedback. Although this is not a comparative study,
we decided to introduce different tasks which involved the use
of ArgoUML, a well-known UML editor. We did not aim at
proving the superiority of Cel, but we wanted to ensure that
each subject would have an idea of how different these two
worlds are.

Subjects. We involved both graduate and undergraduate
students, to have two distinct sets of subjects: those experienced
with modeling, and beginners. Thus, we applied stratified
sampling [24]. Because of nearly identical sample sizes, we
fixed the same number of participants for both categories.

B. Study Design

As suggested by the literature [25], we used various
methodologies to gather the data4.

Screening Questionnaire. To collect information about
the participants and their experience (e.g., gesture proficiency),
subjects were requested to fill in a screening questionnaire.

Tasks. Subjects were asked to model two systems (one
with Cel and one with ArgoUML) and to analyze two existing
software models (again each one with a different tool). Thus,
we had to find four different object systems, described below.
The tasks were limited to 20 minutes of duration.

Modeling Tasks (A1 and A2). We provided participants a
textual description of two systems S1 and S2. The goal was
to model them in a sufficiently detailed manner, including
internals and relationships. The participants were free to stop
before the time limit, if they were convinced that the model
they produced was sufficient to represent the given description.

Comprehension Tasks (B1 and B2). These tasks required the
participants to analyze the software models of two systems S3
and S4. The participants were asked to give a brief description
of the overall purpose of the modeled system, identify the key
entities, and report the strategy they employed to find such
information. The subjects could stop whenever they finished
answering. During each evaluation run, we also annotated the
amount of time used by each user to solve each task.

Object Systems. To avoid to produce systems which would
favor Cel over ArgoUML, we chose four design exercises cre-
ated by Prof. Cesare Pautasso5 from the University of Lugano,
in the context of his Master course on Software Architecture
& Design. Two simple systems have been employed for the
modeling tasks and two more complex ones have been used
for the comprehension tasks. These latter tasks needed existing
software models: We did not create the models ourselves, but
produced them based on solutions proposed during the course.
The models, designed in both Cel and ArgoUML, are identical
in terms of entities, positions (when possible), and relationships.
The four systems can be briefly described as follows:

S1: Star Bux DJ. This system models a radio service for a
coffee chain. The DJ can upload new songs and create
a playlist for each day. Each store retrieves the playlist,
downloads the songs and plays them.

S2: ATM System. This model mimics a distributed Automated
Teller Machine (ATM). Customers can withdraw from any
bank. Each bank has it own account system that has to
be reused. At the end of the day the ATM sends reports
to any bank involved in the logged transactions.

S3: Book A Trip. The system concerns a novel interface for a
legacy system used to book flights. Clients can reserve a
flight, print tickets and cancel reservations. The system
should also provide a new security layer and record all
the history of trips for further data analysis.

S4: Public Transport. This system models a service to support
people using public transport. It exploits GPS positioning
to suggest routes, integrates schedules of different transport
means, and takes traffic into account.

4The interested reader can find the whole data in [26].
5http://www.pautasso.info/

Debriefing Questionnaire. After the experiment a debrief-
ing questionnaire was filled by the participants where they
were asked to give feedback on different aspects of Cel, on the
differences between Cel and ArgoUML, and on the experiment.

Post-experiment Interview. A short (roughly 15 minutes),
semi-structured interview conducted after the experiment,
to collect further feedback about the usage of Cel and to
double check the answers given in the debriefing questionnaire.
Example questions that guided the interview are listed below.

1. How was the overall experience with Cel? Was it difficult to use?
2. Were the gestures difficult to perform? What would you change?
3. How did you find the core concepts in tasks B1 and B2?
4. Was the zoomable interface intuitive?
5. Which problems did you encountered in modeling with Cel?
6. Do you have any other suggestion or idea to improve Cel?

As observed by Lethbridge et al. [27], participants are
comfortable with questionnaires and interviews, yet they tend
to report only facts which are relevant to them (which are
potentially not the ones researchers are looking for). To avoid
this, we observed the subjects while working and annotated
key events, which we investigated at the end of the interview.
As we borrowed the different tasks from an external source
(i.e., a university course) we reduced possible biases. Moreover,
to minimize the chance of having two easy tasks assigned to
Cel, we designed two treatments in which the tasks employing
Cel and ArgoUML were switched. We used a balanced design
to have the same number of participants for each treatment.

Instrumentation. At the beginning of the evaluation a
tutorial of 10 minutes on the essential features of both tools
was given. A handout containing all the information on the
experiment and the tasks was then distributed to the subjects,
who could ask questions in case of difficulties.

C. Execution & Analysis

We did a total of six runs of our study. In qualitative
evaluations the quantity of data is huge [27], a problem
known as “attractive nuisance” [28]. Therefore, a handful of
participants may be sufficient to gather enough data, yet the
findings may be difficult to generalize, while they are precious
to create a base for further qualitative or quantitative studies.
Qualitative evaluations employs techniques to analyze the data
which usually do not rely on precise measurements to yield
to conclusions [29]. We used theory generation, extracting
different statements supported in multiple ways by the data.
In particular, we used the constant comparison method [30],
[23], in which codes are assigned to different parts of the data,
emphasizing their relevance to a particular theme of interest.
In a second step the data is re-analyzed to search patterns
and trends. Such groups of passages can then be condensed in
propositions. This method is part of “grounded theory” methods,
as the theories produced are “grounded” in the data [30]. It is
important when generating such theories also to confirm them.
As claimed by Seaman [31], although quantitative hypothesis
testing and statistical significance are often rewarded more,
confirmation of theory in qualitative research has the same
value. In our study we used member checking [32], a method
in which the potential findings are presented to the subjects
themselves, to get their support for final conclusions.

http://www.pautasso.info/

D. Results & Discussion

Of the six subjects, three had experience with modeling and
three rated themselves as beginners. By analyzing the timing
information (see Table I), Cel seems not inferior when creating
new models or comprehending existing ones.

TABLE I: Completion time data

Cel (mins) ArgoUML (mins)
Subject A1 A2 B1 B2 A1 A2 B1 B2
P1 20 - 7 - - 14 - 8
P2 - 14 - 14 20 - 13 -
P3 22 - 16 - - 23 - 18
P4 - 9 - 5 10 - 7 -
P5 20 - 13 - - 21 - 8
P6 - 24 - 7 21 - 7 -
Tot. time 62 47 36 26 51 58 27 34
Tot. tasks 109 62 109 61

Overall, subjects were enthusiastic about Cel. They claimed
that the minimal set of modeling constructs available in
Cel favors rapid creation of new models, without dealing
with tedious details. This minimalism is also “good for
fast understanding” (cit. P6). All subjects agreed that Cel’s
zoomable interface is effective in rapidly jumping from a high-
level system overview to the details of a single entity. This
feature is essential to rapidly analyze an unknown model and the
different visual cues (e.g., enlarged channels) considerably push
the comprehension power of Cel. Overall, the user interface
was strongly appreciated, especially the matrix: all subjects
found the automatic management of all layout-related aspects
remarkable, allowing users to concentrate on actual modeling.
P1, P2 and P5 found our custom gestures intuitive, while P3,
P4 and P6 found them less so, yet easy to learn.

Insights from the Debriefing. During the design of our
study we also came up with the following research questions:

RQ1 How do participants adapt to different modeling
techniques which provide distinct sets of elements
to create software models?

RQ2 Which strategy is commonly employed by users to
identify core concepts of unknown software models
and how do they adapt to different visual cues?

RQ1 pertains to the two modeling tasks A1 and A2. With
ArgoUML only three subjects employed different types of
relationships, and only sporadically; everyone mostly used
associations. Nobody used abstract classes nor interfaces, but
this may be a direct consequence of the nature of the systems
to be modeled. With Cel we observed that the subjects used all
the elements it provides, especially generic relationships. All
subjects were satisfied by the minimalism of Cel, stating that
the limited number of entities and relationships were exactly
what they needed. We noticed that people were flexible enough
to switch contexts among different modeling methodologies.
However, techniques such as UML offer many specialized
modeling concepts, and users employ only few of them if they
are not forced to. Such desire for a simple modeling technique
has been confirmed by our participants: P5 stated related to
Cel that “Few relationships and entities are sufficient and help
me in focusing only on modeling.”

In summary, it seems that users are able to adapt to different
modeling methodologies, but they seek simpler solutions
with respect to mainstream, digital, modeling methodologies.
Although ArgoUML provides many more elements than Cel,
users perceived both approaches as functionally equivalent, and
actually preferred our Cel’s simpler methodology (as suggested
by Ockham’s Razor design principle [33]).

RQ2 involves the strategies employed by the subjects to
identify the core concepts of the systems in tasks B1 and B2.
They can be summarized as follows:

• P1 mainly focused on entities internals, while P6 mainly
targeted entities referencing many relationships. Neverthe-
less, they both used the information gathered while looking
at the entities to understand the system. P6 refined this
strategy by also looking at entities names. This approach
was harder to adopt in Cel because names are not always
visible. P1 exploited the zoomable interface of Cel to
switch from a global view of the system to a more local
one and finally to a visualization of entity internals.

• P2, P4 and P5 identified core components by exclu-
sively considering the number of relationships. P2 used
Cel highlighting to focus on some of the entities which
were candidates to become key elements and observed
the connections direction following the markers. P5 also
refined comprehension while using Celby first looking
at the width of the grid channels, then selecting and
highlighting entities in the neighborhood of crossing points
to observe the number of connections.

• P3 used a different technique for each tool. With Cel P3
focused on entities with many relationships, exploiting
also the direction information. With ArgoUML, instead,
the participant looked at fields and methods. P3 stated that
this was due to the impossibility of rapidly understanding
the direction of relationships in ArgoUML.

In object-oriented systems core concepts are implemented
in key entities, represented by (key) classes. Subjects identified
key entities exploiting relationship or internals. Relying on the
name of entities as done by P6, instead, can be misleading,
especially in badly designed models. Understanding a software
system is a complex operation and the perfect method to find
the key entities does not exist. We observed that users prefer to
use a rapid technique, being aware that it is not perfect. They
prefer to learn about the system while analyzing some entities
and, eventually, refine the search.

Overall, we learned that users employ simple, rapid, rea-
sonable, yet not perfect techniques to find key entities of an
unknown software model. They adapted without major issues to
the user interface they were confronted with and exploited the
available visual cues. With the exception of P5 all participants
used some peculiarities of the user interface (e.g., the zoomable
interface of Cel or the easy access to fields and methods in
ArgoUML) to enhance their basic analysis methodology. Thus,
a well-designed user interface can enrich model comprehension.

Reflections. Summarizing, the feedback gathered during
our evaluation is precious, despite the small number of subjects.
Some suboptimal aspects of our current implementation have
been remarked, yet, overall, our approach was highly appreci-
ated (especially for its novelty) and the subjects claimed that it
can be considered a valid alternative to mainstream modeling.

E. Threats to Validity

To mitigate internal validity we chose subjects who were at
least beginners to modeling and with basic knowledge of UML.
We also decided to not design the tasks ourselves. For a fair
baseline we opted for a well-known UML editor, ArgoUML.
We also set the same starting conditions (e.g., fresh installation,
quiet setting) for each run of the experiment. We also had to
cope with external validity issues. We based the choice of our
subjects on their modeling knowledge. Although this may not
be the best criteria for a representative sample, the estimation
of other relevant factors (e.g., iPad proficiency) is difficult even
for the subjects themselves. Moreover, the tasks and the object
systems we used for this experiment may not reflect real-world
situations. However, we introduced questions (e.g., what is the
overall purpose of the system?) to mimic real-world situations
(i.e., a developer who has to understand an unknown system).
The object systems we selected are complex enough to be non-
trivial for experts, yet also feasible for beginners. We avoided
the experimenter effect by using reference solutions to evaluate
the work done by the users. To minimize the disturbance given
by the presence of the experimenter we limited our interaction
with the subjects, and were unobtrusive while taking notes.
Finally, since we performed a controlled qualitative study (as
opposed to a quantitative one) the results were less crucial than
the actual feedback given by the participants.

IV. RelatedWork

Given the amount of tools for modeling systems, which we
do not compete with, we discuss only closely related work.

Lightweight modeling made digital. When confronted
with design problems developers often sketch potential solutions
using lightweight, informal, means such as the whiteboard [34].
Electronic whiteboards have been leveraged in Calico [35],
which adds the possibility to easily switch between multiple
sketches, favoring the reuse of user-defined notations. Our
approach is more focused on conceiving an alternative modeling
methodology. CRC cards are also used to rapidly prototype
design decisions. Creww [36] alleviates the weaknesses of
“low-fi” CRC sessions by aiding the process using Wii-Remotes
as input devices. Creww records development sessions and
helps with the storage of the generated cards in a digitalized
form, yet the authors advocate the usage of UML in the last
step of CRC sessions. With Cel we propose a solution using a
simple visual language not based on UML.

UML made portable. UML editors are the main instrument
through which semi-formal modeling is performed, and many
of them have been ported to devices like tablets. Astah* UML
pad6 provides the means to construct class diagrams and to
export models. DrawUML7 allows to (concurrently) create
different types of diagrams. Ma et al. proposed a web-based
UML modeling tool with touch gestures, combining them with
traditional keyboard and mouse input [37]. These applications
do not compete with full-fledged desktop UML editors and
should be rather considered as complementary tools. With
Cel we aim to create an independent, competitive alternative.

Portable programming. Novel technologies have been
experimented also in the context of IDEs. For example, YinYang

6http://astah.net/editions/pad
7http://itunes.apple.com/us/app/draw-uml-for-ipad/id428468147

[38] is a visual programming language explicitly designed to
allow development on tablet computers. TouchDevelop [39],
instead, introduces a scripting language for Windows Phone
devices. Finally, Coffee Table [40] is an IDE built around
a shared interactive desk, to share elements and project the
software architecture and workflow. These approaches focus
on programming, while with Cel we concentrate on modeling.

Alternative metaphors. Cel does not permit to write source
code, yet we took inspiration from different research which
leverage programming through the use of new metaphors. In
Gaucho [41] developers write programs by directly manipulat-
ing graphical objects. Code Bubbles [42] depicts code fragments
as lightweight, fully editable bubbles that can be grouped
together, creating concurrently visible working sets. In Cel, we
use abstraction to present a concise view of the entities of a
model: A simple named rectangle following a color scheme.
This is comparable to how the mentioned tools abstract away
from treating source code as mere text. Code Canvas [43]
proposes another innovative approach, in which the user is
provided with an infinite zoomable interface where editable
content and project-related information coexist. In Cel, we also
make use of the canvas metaphor, enabling the developer to
arrange the model in an infinite, zoomable, 2D surface.

V. Advocatus Diaboli

A number of criticisms may be raised towards Cel.

Cel is nothing new. Cel is neither the first modeling tool
nor the last one, but it tackles modeling from a novel perspective.
We target the initial stages of modeling, where the focus is more
on laying out the essence of a system. To this aim, Cel only
provides a few key features, enough to create accurate models
without delving into time-consuming details.

Cel is too simple. Cel is just “a bunch of rectangles with
three distinct colors to visualize entities and one single type of
line depicted with two different colors to denote relationships”,
and that is what we aimed for. Since users can achieve non-
trivial results with the few concepts that they are provided with,
this is not functional poverty. Citing White, “Design is not the
abundance of simplicity, it is the absence of complexity” [44].

Cel does not scale. The infinite 2D space makes it possible
to extend the model, but the impossibility to rapidly jump to
different portions of the matrix, combined with the difficulty of
managing very large matrices, may lead to scalability problems.
However, Cel has been designed for rapid modeling sessions,
which should not involve very large models. Moreover, we are
developing a search system and investigating ways to manage
large matrices, such as “portal” cells that lead to other models.

Cel is less collaborative than a whiteboard. Cel is not
aimed at replacing the collaborative experience of modeling on
a whiteboard, yet we discussed how Cel adresses the drawbacks
of a whiteboard, especially its informal and volatile nature.

Cel is not validated. The promising results obtained in
our study must be taken with a grain of salt. Other studies
have to be conducted to assess the potential of Cel, for
example to measure the cognitive loads of operations performed
using gestures. However, the insights gathered during this first
qualitative evaluation can be the ground of further, quantitative,
experiments such as [45].

http://astah.net/editions/pad
http://itunes.apple.com/us/app/draw-uml-for-ipad/id428468147

VI. Conclusions

We presented Cel, a novel methodology for object-oriented
modeling. UML-based tools lack flexibility and simplicity,
while lightweight, flexible means produce volatile output.
Cel mitigates the drawbacks of both worlds while keeping
their advantages. It uses a matrix-based visual metaphor
and a minimal set of constructs to support modeling. It
exploits semantic zooming to optimize the amount of displayed
information in a small screen size. We performed a controlled
study to gather feedback on our approach. From this evaluation
Cel seems at least as competitive as UML-based modeling,
which is promising. We also took a critical stance towards
Cel, clarifying the controversial aspects. We tried to not
underestimate the risk of creating an exciting but useless
modeling toy. We believe there is a void middle ground between
lightweight modeling such as a whiteboard, and heavyweight
means like UML. Cel is a leap of faith into that void.

Acknowledgments. We gratefully acknowledge the finan-
cial support of the Swiss National Science Foundation through
project “HI-SEA” (no. 146734).

References
[1] R. Lee and W. Tepfenhart, Practical object-oriented development with

UML and Java, ser. An Alan R. Apt Book Series. Prentice Hall, 2002.
[2] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software

Engineering, 2nd ed. Prentice Hall, 2003.
[3] J.-M. Favre, “Foundations of model (driven) (reverse) engineering:

Models - episode i: Stories of the fidus papyrus and of the solarus,” in
Language Engineering for Model-Driven Software Development, 2004.

[4] H. van Vliet, Software Engineering - Principles and Practice, 2nd ed.
Wiley, 2000.

[5] N. M. Wilkinson, Using CRC Cards — An Informal Approach to Object-
Oriented Development. SIGS Publications, Inc., 1995.

[6] D. Bellin and S. Simone, The CRC Card Book. Addison Wesley, 1997.
[7] D. Parnas, “Software aging,” in Proceedings ICSE 1994 (16th ACM/IEEE

Int. Conf. on Soft. Eng.), 1994, pp. 279–287.
[8] G. C. Murphy, D. Notkin, and K. J. Sullivan, “Software reflexion models:

Bridging the gap between design and implementation,” IEEE Trans. on
Soft. Eng., vol. 27, no. 4, pp. 364–380, 2001.

[9] M. Fowler and K. Scott, UML distilled - a brief guide to the Standard
Object Modeling Language (2. ed.). Addison-Wesley-Longman, 2000.

[10] R. Lemma, M. Lanza, and F. Olivero, “Cel: Modeling everywhere,” in
Proc. of ICSE 2013 (35th ACM/IEEE Int. Conf. on Soft. Eng.), 2013,
pp. 1323–1326.

[11] J. Ousterhout, “Corner stitching: A data-structuring technique for vlsi
layout tools,” IEEE Transactions on CAD of Integrated Circuits and
Systems, vol. 3, no. 1, pp. 87–100, 1984.

[12] B. Sharif and J. I. Maletic, “The effect of layout on the comprehension
of uml class diagrams: A controlled experiment,” in Proc. of the 5th
IEEE International Workshop on Visualizing Software for Understanding
and Analysis. IEEE Computer Society, 2009, pp. 11–18.

[13] R. B. Smith, J. Maloney, and D. Ungar, “The self-4.0 user interface:
manifesting a system-wide vision of concreteness, uniformity, and
flexibility,” SIGPLAN Not., vol. 30, no. 10, 1995.

[14] A. Riel, Object-Oriented Design Heuristics. Addison-Wesley, 1996.
[15] K. Mullet and D. Sano, Designing Visual Interfaces. Prent. Hall, 1995.
[16] G. Rush, Visual grouping in relation to age, ser. Archives of psychology.

Columbia university, 1937.
[17] G. B. Singh, “Single versus multiple inheritance in object oriented

programming.” OOPS Messenger, vol. 6, no. 1, pp. 30–39, 1995.
[18] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms, 2nd ed. MIT Press, 2001.
[19] J. Raskin, The Humane Interface - New Directions for Designing

Interactive Systems. Addison-Wesley, 2000.

[20] D. A. Norman, “Design rules based on analyses of human error,”
Communications of ACM, vol. 26, no. 4, pp. 254–258, 1983.

[21] N. K. Denzin and Y. S. Lincoln, Handbook of qualitative research.
Sage Publications, 1994.

[22] F. Shull, J. Singer, and D. I. K. Sjoberg, Guide to Advanced Empirical
Software Engineering. Springer, 2008.

[23] M. B. Miles and A. M. Huberman, Qualitative Data Analysis: An
Expanded Sourcebook. Sage Publications, 1994.

[24] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering: an introduction.
Kluwer Academic Publishers, 2000.

[25] R. Barbour, Introducing Qualitative Research. Sage, 2008.
[26] R. Lemma, “Software modeling in essence,” Master Thesis, Faculty of

Informatics, University of Lugano, Jun. 2012.
[27] T. C. Lethbridge, S. E. Sim, and J. Singer, “Studying software engineers:

Data collection techniques for software field studies,” Empirical Software
Engineering, vol. 10, pp. 311–341, 2005.

[28] M. B. Miles, “Qualitative data as an attractive nuisance: The problem
of analysis,” Administrative Science Quarterly, vol. 24, pp. 590+, 1979.

[29] D. I. K. Sjoberg, T. Dyba, and M. Jorgensen, “The future of empirical
methods in software engineering research,” in 2007 Future of Software
Engineering. IEEE Computer Society, 2007, pp. 358–378.

[30] B. G. Glaser and A. L. Strauss, The Discovery of Grounded Theory:
Strategies for Qualitative Research, ser. Observations (Chicago, Ill.).
Aldine de Gruyter, 1967.

[31] C. B. Seaman, “Qualitative methods in empirical studies of software
engineering,” IEEE Trans. Softw. Eng., vol. 25, pp. 557–572, Jul. 1999.

[32] Y. S. Lincoln and E. G. Guba, Naturalistic Inquiry, ser. Sage focus
editions. Sage Publications, 1985.

[33] W. Lidwell, K. Holden, and J. Butler, Universal Principles of Design,
2nd ed. Rockport, 2010.

[34] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko, “Let’s go to the
whiteboard: how and why software developers use drawings,” in Proc.
of CHI 2007 (ACM Conf. on Hum. Fact. in Comp. Sys.). ACM, 2007,
pp. 557–566.

[35] N. Mangano, A. Baker, M. Dempsey, E. Navarro, and A. van der Hoek,
“Software design sketching with calico,” in Proc. of ASE 2010 (25th
IEEE/ACM Int. Conf. on Aut. Soft. Eng.). ACM, 2010, pp. 23–32.

[36] F. Bott, S. Diehl, and R. Lutz, “Creww: collaborative requirements
engineering with wii-remotes,” in Proc. of ICSE 2011 (33rd ACM/IEEE
Int. Conf. on Soft. Eng.). ACM, 2011, pp. 852–855.

[37] Z. Ma, C.-Y. Yeh, H. He, and H. Chen, “A web based uml modeling
tool with touch screens,” in Proc. of the ASE 2014 (29th IEEE/ACM Int.
Conf. on Aut. Soft. Eng.), 2014, pp. 835–838.

[38] S. McDirmid, “Coding at the speed of touch,” in Proc. of Onward! 2011,
2011, pp. 61–76.

[39] N. Tillmann, M. Moskal, J. de Halleux, and M. Fahndrich, “Touchde-
velop: programming cloud-connected mobile devices via touchscreen,”
in Proc. of Onward! 2011, 2011, pp. 49–60.

[40] J. Hardy, C. Bull, G. Kotonya, and J. Whittle, “Digitally annexing
desk space for software development,” in Proc. of ICSE 2011 (33rd
ACM/IEEE Int. Conf. on Soft. Eng.), 2011, pp. 812–815.

[41] F. Olivero, M. Lanza, and M. Lungu, “Gaucho: From integrated
development environments to direct manipulation environments,” in
Proc. of the 1st Int. Workshop on Flexible Modeling Tools, 2010.

[42] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Kaplan,
C. Coleman, F. Adeputra, and J. J. L. Jr., “Code bubbles: a working
set-based interface for code understanding and maintenance,” in Proc.
of the 28th Int. Conf. on Human factors in computing systems. ACM,
2010, pp. 2503–2512.

[43] R. DeLine and K. Rowan, “Code canvas: zooming towards better
development environments,” in Proc. of ICSE 2010 (32nd ACM/IEEE
Int. Conf. on Soft. Eng.), 2010, pp. 207–210.

[44] A. White, The Elements of Graphic Design. Allworth Press, 2002.
[45] R. Wettel, M. Lanza, and R. Robbes, “Software systems as cities: A

controlled experiment,” in Proc. of ICSE 2011 (33rd ACM/IEEE Int.
Conf. on Soft. Eng.), 2011, pp. 551–560.

	Introduction
	Modeling with Cel
	Cel Philosophy and Core Elements
	The Zoomable Interface
	Interaction
	Skeleton Code Generation

	Evaluation: Controlled Qualitative Study
	Planning
	Study Design
	Execution & Analysis
	Results & Discussion
	Threats to Validity

	Related Work
	Advocatus Diaboli
	Conclusions
	References

