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Abstract

In the midst of the digital era, software systems have become ubiquitous, and their complexity has grown

by orders of magnitude. The problem of understanding such systems, making them explainable, pressingly

arises. Visualization tools are a great asset to understand the structure of software systems. Voronoi treemaps

is the current state of the art regarding space-�lling representation of hierarchical data. In this project, a purely

object-oriented and interactive implementation of Voronoi diagrams is presented, leveraging the powerful Roas-

sal visualization framework and the live environment o�ered by Pharo.
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1 Introduction

1.1 Motivation

Software systems are complex hierarchical structures consisting of thousands of entities and millions lines of code.

Much data is either inherently hierarchical or purposefully organized in this manner for easier comprehension,

abstraction, and interaction. The hierarchical relations can be represented in a rooted tree, where singleton

sets of base elements form leaves, and each inner node represents the union of its children. Treemaps have been

proposed as a space-�lling representation of such hierarchy trees. Voronoi treemaps are the current state of the

art in this �eld, and readers familiar with computational or combinatorial geometry will have noticed in the

last few years the increasing interest in such geometrical construct, even in articles of natural science journals

under di�erent names speci�c to the respective area. Voronoi diagrams arise in nature in various situations

and several natural processes can be used to de�ne particular classes of Voronoi diagrams. Human intuition is

often guided by visual perception: if one sees an underlying structure, the whole situation may be understood

at a higher level. Second, its mathematical properties led several authors to believe that it is one of the most

fundamental constructs de�ned by a discrete set of points.

Figure 1. Voronoi diagram patterns in nature

1.2 Goal

Design a Voronoi diagram interactive and purely object-oriented implementation in Pharo with the aim of

facilitating software systems explainability, making them more understandable by visualizing software metrics.

Software metrics are a quantitave measure of the degree to which a software system, a component, or process

possesses a given attribute [10].

1.3 Approach

At the beginning of the project, a top-down analysis followed the study of the state of the art of treemaps and

Voronoi diagrams described in section 2, leading to gather the necessary requirements for the analysis of the

domain of the topic in section 3. To tackle the problem space, the system must follow an object-oriented design

as depicted in section 4. Then, the implementation of the system is detailed in section 5. Finally, the system

limitations are discussed together with the wrap up summary of the project in section 6.
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2 State of the Art

2.1 Previous Work on Treemaps

Treemaps are a space-�lling method of visualizing large hierarchical data sets. They were �rst introduced by

Shneiderman and Johnson in 1991 [8]. Originally designed to visualize �les on a hard drive, treemaps have been

applied to a wide variety of domains ranging from �nancial analysis [9], [15] to sports reporting [6]. The basic

idea is to subdivide a given area without producing holes or overlappings. Therefore, the area is alternately

divided horizontally and vertically according to the hierarchy of the objects and the given proportion between

the considered objects. This treemap layout approach is called Slice and Dice, and an example is represented

in Figure 2.

Figure 2. Slice-and-Dice treemap layout algorithm [10]

The treemap is constructed via recursive subdivision of the initial rectangle. The size of each sub-rectangle

corresponds to the size of the node. The direction of the subdivision alternates per level: �rst horizontally, then

vertically, again horizontally, etc. The initial rectangle is partitioned into smaller ones, so that the size of each

rectangle re�ects the size of the leaf. As a result of its construction, the treemap re�ects the structure of the

tree.

A negative e�ect in this layout is that the subdivision of each step is done in one dimension. As result, thin

elongated rectangles with high aspect ratio between width and height emerge, if many objects or ones with high

diversity in size are considered. Such long rectangles are di�cult to see, select, compare in size and label as

Figure 3 presents as example.

Figure 3. Aspect ratio problem with Slice-and-Dice treemap layout [10]

From 1999 to 2001, the issue was �rst tackled by Clustered Treemaps [16] where the aspect ratio problem

was to employ both vertical and horizontal partitions at each level of hierarchy and place similar sized as a

contiguous region, as shown in Figure 4.

Then, Squari�ed Treemaps [2] forced the aspect ratio of the rectangles to be close to one to resemble a square,

and showed how frames can be used to improve the perception of structure. With squari�cation, the relative

ordering of siblings is lost and images tend to be less regular, with less standard patterns, than standard

treemaps. Nevertheless, when the structure of the tree is important, its usefulness is evident, and an example

is shown on the left in Figure 5.

Finally, Ordered Treemaps [11] ensures items near each other in the given order will be near each other in the

treemap layout. Thus, the improvement relies on preserving the ordering of the treemap, as �guratively shown

in Figure 6.

The main optimization criterion of these layouts algorithms is the approximation of the sub-rectangles to

the shape of a square, whereby the aspect ratio between width and height of each rectangle converges to one.
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Figure 4. Hierarchical improvement from S&D to Clustered Treemap layout [16]

Figure 5. Framed Squari�ed Treemap layout [2]

Figure 6. Ordered improvement from Squari�ed to Ordered Treemap layout [11]
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Other criteria are considered as well: for example, the order of the objects or the nearness to a given point in

the initial area, or other criteria often closely related to the respective application domain.

The persisting problem is the di�culty to di�erentiate if two neighbor objects are siblings or far away

in the hierarchy. The problem is provoked by the square-like shape of the rectangles, and because the edges

are only horizontally and vertically aligned, whereby the edges of the di�erent objects appear to run into each

other. Figure 5 shows that this e�ect may be reduced, but can not be prevented by using frame borders around

the rectangles and/or Cushion Treemaps [13] with their shading cushion e�ect. So far all treemap layouts are

restricted to axis-aligned rectangular shapes.

Voronoi treemaps are polygon-based treemaps allowing support for non-regular shapes.

2.2 Voronoi Diagrams

Intuitively, given a number of points in the plane, their Voronoi diagram divides the plane according to the

nearest-neighbor rule: each point is associated with the region of the plane closest to it.

Figure 7. Voronoi diagram for eight sites in the plane [1]

A Voronoi diagram is formally de�ned as follows: given a set S of n distinct points called sites, the

corresponding Voronoi diagram divides the plane into regions, one for each site. Each region, called a Voronoi

cell, consists of exactly those points that have the same closest site.

Since display space is usually bounded, we consider bounded Voronoi diagrams. Formally, for a convex area

Ω ⊂ R2 and a set of sites S = {s1, s2, . . . , sn}, ∀si ∈ S its associated cell Vi is de�ned as:

Vi = {p ∈ Ω : ∥p− si∥ < ∥p− s∥ ∀s ∈ S − si} (1)

where ∥p1 − p2∥ =

√
(x1 − x2)

2
+ (y1 − y2)

2
is the Euclidean distance of points p1 = (x1, y1) and p2 =

(x2, y2). Each cell Vs = V(s) is bordered by a polygon Vs of points that have equal distance to at least two

sites, or belong to the boundary of Ω. Furthermore the area of a cell (region) is denoted by A(Vs).

An ordinary Voronoi diagram is thus de�ned as the collection of cells,

V(S) = {V(s1), . . . ,V(sn)} (2)

Voronoi treemaps objects satisfy the following properties:

1. the distribution of objects completely utilizes the given area without holes and overlappings

2. objects distinguish themselves by their irregular shapes and edges not running into each other

3. objects are compact with aspect ratio between width and height converging to 1

Voronoi cell objects use polygons to satisfy the properties. Polygons, de�ned as a closed plane �gure with n

sides, can be divided into smaller polygons, satisfying the �rst property. Then, polygons have arbitrary shapes

and large amount of edges which can potentially approximate curvatures, satisfying the 2nd and 3rd properties.

The main idea is to consider the objects of the top level in the hierarchy, which are distributed in the given

area. The output will be a set of polygons. For the next hierarchy level, this algorithm is performed recursively

within the according polygons of the considered objects in the hierarchy, and so on.
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2.3 Pharo

I invented the term Object-Oriented, and I can

tell you I did not have C++ in mind.

Alan Kay

Pharo is a re�ective purely object-oriented language supporting live programming inspired by Smalltalk.

It's more than a language: it ships a powerful environment (IDE) for developing software, focused on simplicity

and immediate feedback [3].

Let's break down the terms by brie�y argumenting them. The simplicity lies on the fact that the language

is minimalistic: there are no constructors, type declarations, interfaces, primitive types.

The language is purely and uniformly object-oriented because both system and language are composed from

objects and, most imporantly, messages all the way down. E.g. all of the listed elements are objects: nil (aka

null), true and false, intergers, errors, stacktraces, closures, method implementations, classes, metaclasses and

even the system itself.

The live programming experience is achieved by supporting advanced debugging techniques: on-the-�y

inspection and immediate objects identity swapping during runtime. The latter replaces all references to the

old object in the running environment to the new object. E.g. create or change methods on the �y and receive

immediate feedback of changes.

The re�ection nature exposes to the programmer every object in the system, which can be examined and

changed. E.g. fast objects enumeration of all existing instances of a particular class can aid to detect memory

leaks, or customize metaclasses, which are classes of classes, to change the behavior of the system. The IDE,

VM and compiler are extensively written in Pharo itself, and the language has garbage collection mechanism

for memory managament. The language is duck typed, meaning that the type of an object is determined

by its behavior, and not by its inheritance hierarchy. Image based persistence in Pharo leverages the

re�ection capabilities of the language, by storing the system state in a platform independent �le image format.

For example, during a debugging breakpoint, you can save the image, experiment with code changes, and if

unsuccessful, reload the image to revert to the previous state, allowing you to seamlessly resume the debugging

session later.

It breaks the traditional development paradigm: code, compile, run, debug. Basically, Pharo has all these

capabilities for the ability of the system to evolve without the need to restart the application, thus avoiding to

interrupt the development �ow.

Moreover, the versatility of the language allows to create other languages: the focus is completely shifted

to the problem domain and not the complexity of the language itself, allowing to create Domain Speci�c

Languages (DSLs) following the Domain Driven Design (DDD) principles.

Traditionally, the smalltalk legacy introduced the world to the language virtual machine (VM), which allow

software to be platform independent. Recent languages like Java and C# adopted this concept. Smalltalk

pioneered JIT (Just-In-Time) compilation, a technique for improving the performance of bytecode software

such as Java. It also introduced the concept of Integrated Development Environment (IDE) in a GUI

windowed system with a mouse, including a text editor, a system class browser, object inspector and debugger.

In 1979, a visionary 24 years old Steve Jobs, the founder of Apple, took a look at what Xerox PARC had done

with Smalltalk [7]:

"[...] I was so blinded by the �rst thing they showed me, which was the graphical user interface [...]

and within 10 minutes, it was obvious to me that all computers would work like this someday."

Despite being a powerful tool, it does not mean it will prevent undisciplined coders from making a large

mess very quickly. Still, the Pharo environment and language allow to implement elegant purely object oriented

solutions, which is the main goal of the project.

2.4 Graphs properties

Some properties borrowed from graphs will be useful to understand the complexity of the visualization algorithms

later on.

A graph is a mathematical structure consisting of a set of objects, called vertices, and a set of connections

between them, called edges. It is de�ned as in Formula 3.

G = (V,E) where V is a set of vertices and E is a set of edges (3)
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A graph can be either directed or undirected: implying whether the edges have a direction or not. A graph

can be either connected or disconnected. A connected graph is a graph in which there is a path between every

pair of vertices, whereas a disconnected graph is a graph in which there is at least one pair of vertices for which

there is no path between them.

A complete graph is a connected graph in which there is an edge between every pair of vertices, de�ned as

in Formula 4.

Kn = (V,E) where V = {v1, v2, . . . , vn} and E = {(vi, vj) : vi, vj ∈ V, i ̸= j} (4)

The number of edges in a complete graph is given by the Formula 5.

E =
n(n− 1)

2
where n = |V | (5)
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3 Project requirements and analysis

3.1 Requirements

After studying the state of the art of treemaps and Voronoi diagrams to understand the context of the problem

world through a top-down analysis, a machine solution can be planned.

The system-as-is is the current state of visualization regarding our problem space shipped by Pharo and

o�ered by the Roassal visualization framework: several examples of charts, plots, shapes, layouts, UI components

and features as animations, event handling and interaction capabilities. The problem discussed in the motivation

in Section 1 is the absence of an (interactive) Voronoi diagrams implementation in the Pharo ecosystem. Thus,

the opportunity to �ll this gap arises and lead to gather the domain knowledge necessary from documentation

and expertise in the �eld from my advisors, concerning literature and the community.

The system-to-be objective is the implementation of an interactive purely object-oriented implementation

of Voronoi diagrams in Pharo exploiting the Roassal visualization framework and the re�ection of the language

to o�er inspection capabilities to the user.

Assuming no constraints of hardware and scalability, the system requirements, i.e. the prescriptive

statements formulated in terms of environmental phenomena of the domain, are as follows:

� to visualize diagrams.

� to visualize diagrams interactively.

� to visualize Voronoi diagrams interactively.

� to visualize Voronoi treemaps interactively.

From Section 2, the domain properties, i.e. statements of the problem world expected to hold regardless

of the system, are inferred and listed. From the Voronoi diagram de�nition: a system that presents a set of

sites in the plane, which is divided into regions according to the nearest-neighbor rule. In addition, the treemap

property: a tree is a connected acyclic graph with a root node, where each node has a parent, except the root,

and children, except the leaves. The latter implies that the model can be safely implemented as a natural

recursive data structure.

The software requirements found, i.e. statements to be enforced only by the software-to-be, are listed as

follows:

� Functional requirements

� create a voronoi site and display it on a canvas

� given a collection of voronoi sites, display them on a canvas

� generate from a treemap the following voronoi sites

� given a collection of voronoi sites, compute its graph edges and visualize them

� given a collection of voronoi sites, compute the bisectors from their edges and visualize them

� Non-functional requirements

� Quality requirements

* follow an object-oriented design

* leverage design patterns

* follow style guidelines suggested from Pharo IDE

� Compliance requirements

* the system must be developed entirely in Pharo, no external libraries in any other languages can

be used, e.g. no Foreign Function Interfaces (FFIs) or serving an already computed input model

from another language

* do not use any previous implementation of Voronoi diagrams in Pharo

� Architectural requirements

* the system has a monolith architecture (inherently from single Pharo image instance)
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4 Project design

4.1 System architecture

The system architecture is a monolith image-based instance divided in three main packages: Model, View and

Controller. The Model package contains the Voronoi diagram model used to represent the diagram entities and

its geometrical properties. The View package contains the visual representation objects of the diagram entities,

e.g. a voronoi site will have its voronoi respective view object to represent it on a canvas. The Controller

package contains the objects that will orchestrate the interaction between the model and the view, in order to

perform computation and providing inspection insights, e.g. the object handling the right-click event triggering

a context menu of a voronoi site view object.

The Model-View-Controller (MVC) architectural pattern is used to separate the concerns of the system.

Smalltalk-79 introduced MVC as a way to separate the domain logic from the user interface. The model is

responsible for managing the data and core functionality of the system. The view renders a representation of

the model to the user in a particular format, in this case, shapes in a canvas. The controller handles user inputs

to perform interactions on the model objects.

In Figure 8, the UML class diagram of the system was created using Roassal which leverages the re�ection

of the system, and the code snippet used is provided in Listings 19.

4.2 Diagram Visualizer

Roassal is a visualization engine for Pharo used to showcase the model and its properties in a visual represen-

tation. Every view object, which is a counterpart of a diagram entity model object, has an associated glyph

attribute. A glyph is intended as the low level Roassal shape visual representation of a diagram entity which

can be displayed in the canvas, e.g. a circle, a polygon, a segment, etc. Every view object uses composition, not

inheritance, to encapsulate the glyph attribute and its behavior. The reason for it is to allow to maintainbly

change the glyph representation of a view object without freezing it to a certain shape or behavior, e.g. a

voronoi site view object could be sometimes represented as a circle or a square. To edit the glyph representation

of a view object from within the system, i.e. excluding the user interaction handled through the controller, the

view object provides wrapping methods of the original Roassal Shape API, and the system communicates with

the glyphs only through the view objects.

Assuming the diagram has an outer rectangular bounding polygonal area, the following visualizations are

proposed.

In Figure 9, the visualization of a thousand sites is showcased in a bounded region. The code used to

generate the visualization is provided in Listings 1.

1 diagram := VDiagram new.
2 diagram addRandomSites: 1000 between: (1 to: 200).
3 diagram show

Listing 1. Snippet to visualize a thousand sites

In Figure 10, the visualization of all the possible edges of a hundred sites is showcased. The code used to

generate the visualization is the same as in Listings 1, with a lowered sites count to ease the computation by

recalling from Section 2, that the edges count of a complete undirected graph is n(n−1)
2 = 100(100−1)

2 = 4950

where n is the number of sites, i.e. vertices.

In Figure 11, the visualization of all the possible edges and bisectors of a hundred sites is showcased. First

with the edges overlayed with the bisectors, then only the bisectors are displayed. These kind of setting is

interactive through a context menu furtherly explained in Section 5.

Without loss of generality, we will switch to a more simpli�ed case with only 3 sites in the plane, from an

example available online by Ian VanderSchee [14], displayed in Figure 12 with the snippet code to recreate it

provided in Listings 20. The image displays the edges and bisectors, with the possibility to interactively ask for

the intersections between the bisectors as shown on the right.

From this point, we can ask the system to hide the unrelevant information for the diagram, i.e. the edges,

by selecting it from the context menu later explained. The result will left us with the �rst image of Figure 13,

contains the bisectors, their intersections between each other and the bounding region. The second image is

obtained by hiding the bisectors and requesting to see only the segments obtained by segmenting the bisectors

along their intersections.

Finally, in Figure 14, the system allows to get the �nal voronoi diagram for the correspondent sites: by

following the nearest neighbor rule, the bisector generating the intersection is bounded to 2 sites, and when
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Figure 8. UML diagram of the system
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Figure 9. System showcasing a thousand sites

Figure 10. System showcasing all possible edges for a hundred sites
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Figure 11. System showcasing all possible edges and bisectors for a hundred sites

Figure 12. System showcasing edges, bisectors and intersections from online example [14]
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Figure 13. System showcasing bisectors ⊕ segments from online example [14]

confronted with another external site, if they are near to this third unbinded site then is considered not needed

and deleted.

Figure 14. System showcasing the Voronoi diagram from online example [14]

Further examples of Voronoi diagrams for are provided in Figure (15, 16, 17). These examples have been

generated from Listing 1 using as number of sites 7, 10 and 20 respectively. Two images for each example are

provided: a version with and without the edges in the background, to hint about how the computation and

the complexity increases with the number of sites. The intersection points in red are left in both images to

show the user where the bisectors intersects and grasps the idea of the amount of segments generated by the

intersections.

4.3 User Interaction

The techniques that allow the user to investigate the data and the system are dedicated popup labels, context

menus and interactive zooming [10]. Context menus o�er custom call-by-need computation for each diagram

entity, providing introspection capabilities, and are triggered by right-clicking on a diagram entity over the

canvas, besides the diagram menu, for which you need to click outside the diagram area. Examples for each
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Figure 15. System showcasing a 7 sites voronoi diagram

Figure 16. System showcasing a 10 sites voronoi diagram

Figure 17. System showcasing a 20 sites voronoi diagram
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diagram menu is provided in the computation of the voronoi diagram described the previous section Diagram

Visualizer. The options in the site regarding the triangulation and circumscribed circle are not yet implemented

and furtherly discussed in Section 6.

Figure 18. Context menu respectively for diagram, site, edge and segment entities

The menu styles are reported in Figure 18, Moreover, a popup label is displayed when hovering over a diagram

point and its subclasses, showing its metadata and properties, as shown in Figure 19. The implementation

overrides the asString method of the model object, which is then called by the view object to display the label

by the Roassal Popup object.

Figure 19. Popup label for site and point entities
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5 Implementation

The system was developed using a bottom-up implementation strategy. First the most fundamentals classes

of the model were spotted and designed. Then, their interaction through message passing was implemented.

Builders and design patterns argumented afterwards were used to ease the development process. The visual

representation followed the model design, and lastly the controller to allow user interaction was implemented.

5.1 Recursivity of the model

As mentioned in the requirements Section 3, the treemap is a natural recursive data structure. The Voronoi

treemap has then to be a recursive data structure as well. Suppose only a single level of hierarchy, then the

voronoi diagram would be a set of sites with its corresponding set of regions. In the general treemap case,

there are as many diagram as the number of non leaf nodes in the tree. In Figure 20, the initial perspective

would be seeing the root node as the diagram point of view and its sublayer children as the sites with regions

displayed. E.g. the root node A would be a diagram with sites B,C,D,E, F,G. This is done recursively for

each node which is not a leaf node in the tree. So the remaining diagrams would be from C visualizing H, from

D displaying I, J , and from G showing K.

Figure 20. Generic N-ary tree

The diagram entity model VRegion has been designed to be a recursive data structure, where it has a regions

attribute which is a collection of VRegion objects stricly mirroring the treemap model provided, for which you

can compute the Voronoi diagram of the sites it contains over the de�ned polygonal area of the parent region.

5.2 Evolution of the Model

The design of the model underwent several evolutionary stages, each marked by a distinct paradigm: initially,

the system was implemented in a algorithmic imperative style, as it was described in the academic pubblications.

Such strictly top-down approach lead to a playground script based system with low maintainability, adaptability

and object reusage due to its rigid linear structure.

To mitigate the issue, the system switched to a class-side procedural approach, which encapsulated the

diagram entities in classes, but most of the methods were class-side resembling the signature of the algorithmical

approach, leading to an anemic model in the object. Hence, despite the architectural improvement, object

oriented principles were underutilized as the system relied in static methods without leveraging the potential of

message polymorphism and objects inheritance.

Finally, with the guidance of my advisors, the system was refactored to an object-oriented approach, where

methods and properties were encapsulated within the respective entities on the instance side, breathing life into

the objects and making the model more expressive. The system was clearly divided in 2 main packages already:

core and visualization. Still, the model was hard to use as many interactions between entities were verbosely

long, e.g. to visualize a site, a canvas must exist, that concern is delegated to the view part of a diagram

which must then exist, and so on. To allow a single site to be visualized, I needed it to not rely on any other

entity than itself. As discussed later in Section 5, this led to a MVC architecture and the employment of design

patterns, which vastly increased the adaptability and growth of the system.

The capabilities of the system at this points are shown in Figure 21. Beware, the algorithmical part of the

geometrical properties of the Voronoi diagram were not implemented yet.
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Figure 21. Showcase of diagram visualization with edges and circumscribed sites

5.3 Design Patterns

Historically, the evolution of design patterns is closely related with the rise of mainstream object oriented

languages. The adoption of design patterns is profound in object oriented programming, where they provide a

standardized approach to solve common design challenges and o�ering an high level abstraction to communicate

complex design concepts. They are not solutions, but rather guidelines to design system architecture, promote

code reusability and OOP principles.

5.3.1 Singletons in a live environment

Ensure a class only has one instance, and provide a global point of access to it [5]. Part of the Creational

patterns, as shown in Figure 22.

Each diagram entity has its corresponding subclass from VMenu presenter to display the context menu when

right-clicking on it. To ease scalability of the diagram visualizer, I used a singleton pattern to instantiate only

one object per each Menu presenter, e.g. menu for sites, menu for edges, menu for bisectors, etc, as shown in

Listings 2. In this way, the menu depending on the entity clicked only changed the diagram entity glyph, which

is the receiver of the menu action, and the canvas, in case there is more than one diagram visualizer open, as

shown in Listing 5.

The constructor of every singleton is private to avoid instantiation of the object from outside the class, as

shown in Listing 6. When changing the source code of the menu presenter, since pharo is a live environment

I needed to create a class side method to retrieve the instance from every subclass of the menu presenter and

then explicitly every set it to nil in order for the garbage collector to dispose them, as shown in Listings (3,4).

Thus, allowing a new instance to be created with the new source code.

Figure 22. UML class diagram for singleton pattern

1 getInstance
2 ^ uniqueInstance ifNil: [ uniqueInstance := self basicNew initialize ]

Listing 2. Singleton get accessor in VMenu

1 delete
2 uniqueInstance := nil

Listing 3. Dispose singleton instance of VMenu
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1 deleteAll
2 self allSubclassesDo: #delete

Listing 4. Dispose all singleton instance of VMenu subclasses

1 menu
2 | menu |
3 menu := VMenuSite getInstance.
4 menu glyph: self glyph.
5 ^ menu

Listing 5. Singleton menu presenter retrieved VSiteView

1 new
2 ^ self error: 'singleton, use getInstance'

Listing 6. Singleton class-side constructor in VMenu

5.3.2 Lazy Initialization

In Pharo the allocation in memory of an object is done by the VM, allowing us to use data structures that

do not need to be initialized. The lazy evaluation is a strategy that delays the evaluation of an expensive

expression until its value is needed, avoiding repeating evaluations, as shown in Figure 23. In the project, lazy

initialization tactic is implemented to delay the instantiation of an object until the �rst time it is needed. It

uses a special marker value (usually null) to indicate a �eld isn't loaded. Every access to the �eld checks the

�eld for the marker value and if unloaded, loads it [4]. It is used for every view counterpart of each diagram

entity, which is the expensive object handling its visual representation, as shown in Listing 7. Every diagram

entity has a view attribute that is initialized lazily when it is visualized on a canvas, i.e. when the view getter

is called. An example of its usage is provided in the diagram controller updateView method, where every site is

loaded up in the canvas using their correspondent glyphs stored in their entity view, thus updating the current

scenario, as shown in Listing 8.

Figure 23. UML class diagram for lazy loading pattern

1 view
2 view ifNotNil: [ ^ view ].
3 view := VSiteView newFrom: self.
4 ^ view

Listing 7. Lazy initialization of view getter in VSite

1 ...
2 siteGlyphs := self model sites collect: [ :site |
3 | siteGlyph |
4 siteGlyph := site glyph. "HERE"
5 siteGlyph radius: diameter / 2.
6 siteGlyph ].
7 ...

Listing 8. Usage of lazy initialization in VDiagramController
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5.3.3 Builder

Separate the construction of a complex object from its representation so that the same construction process can

create di�erent representations. [5]. Part of the Creational patterns, its commond UML class representation is

shown in Figure 24.

Figure 24. UML class diagram for builder pattern

The implementation of builder pattern was used to create an immediate process to instantiate multiple sites

randomly sparsed within the diagram. It was also used to create a 1 layer treemap. Regarding the former, the

site builder is initialized to not create any site yet with a range from [1, 100] to spawn them randomly, as shown

in Listing 9. It is possible to set the diagram, interval and number of sites that the builder needs to create.

Then, the lazy build method is called to create the sites, where the range is iterated to create them and the

randomly picked position from the interval and the diagram are set to each site. as shown in Listing 10. An

example of its usage happens within the diagram, which o�ers an method to add a number of sites between a

given interval, as shown in Listing 11.

1 initialize
2 super initialize.
3 numberOfSites := 0.
4 interval := 1 to: 100

Listing 9. VSiteBuilder initialization

1 build
2 | foreach sites |
3 foreach := 1 to: self numberOfSites.
4 sites := foreach collect: [ :i |
5 | site |
6 site := VSite newFromRandomPositionIn: self interval.
7 site diagram: self diagram.
8 site ].
9 ^ sites

Listing 10. VSiteBuilder lazy build method for sites

1 addRandomSites: aNumberOfSites between: anInterval
2 | builder vPoints boundingPoly |
3 builder := VSiteBuilder new: aNumberOfSites.
4 vPoints := builder
5 interval: anInterval;
6 diagram: self;
7 build.
8 vPoints do: [ :s | self addSite: s ].
9 boundingPoly := GRectangle origin: 0 @ 0 corner: vPoints max.

10 self rootRegion polygon vertices: boundingPoly vertices.
11 ^ boundingPoly

Listing 11. Usage of site builder within VDiagram
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5.3.4 Template Method

De�ne the skeleton of an algorithm in an operation, deferring some steps to subclasses. Template Method lets

subclasses rede�ne certain steps of an algorithm without changing the algorithm's structure [5]. Part of the

Behavioral patterns, its common UML class representation is shown in Figure 25.

Figure 25. UML class diagram for template method pattern

The implementation of the template function was used to handle menus for each view object using the menu

attribute. The VView class declared it as an abstract method delegating its implementation resposibility to its

subclasses, as shown in Listing 12. Subclasses, e.g. VSiteView, implemented this method by calling the right

menu, as shown in Listing 13. The menu object is a previous mentioned singleton object setting the current

glyph of the menu to the glyph of the current viewed object.

1 menu
2 ^ self subclassResponsibility

Listing 12. Template method for menu

1 menu
2 | menu |
3 menu := VMenuSite getInstance.
4 menu glyph: self glyph.
5 ^ menu

Listing 13. VSiteView menu

5.3.5 Strategy

De�ne a family of algorithms, encapsulate each one, and make them interchangeable. Strategy lets the algo-

rithm vary independently from clients that use it [5]. Part of the Behavioral patterns, its common UML class

representation is shown in Figure 26.

Figure 26. UML class diagram for strategy pattern

I implemented a strategy pattern to model the distance class called VDistance, containing algorithms that

could be used for the computation of the diagram.

The distance object has only the method attribute. The method attribute is assigned to a block that takes

3 arguments: two VSite objects and a weight number. The snippet in Listing 14 shows the power weighted

algorithm. In Listing 14, the method attribute is set to the power weighted algorithm at object initialization

using the useDistance message. Finally, to compute the distance between two sites, the distanceFrom:to:weight:

message is sent to the distance object. Optionally, if using the distanceFrom:to: message, the weight is set to nil,
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and the algorithm is called with weight value that will lead to the simple weightless distance. Listing (16, 17)

shows the computation of the distance. A usage example of such object is shown in Listing 18.

1 powerWeighted
2 ^ [ :aVSite :anotherVSite :anOptWeightNumber |
3 | euclidean aWeight |
4 aWeight := anOptWeightNumber ifNil: [ 0 ].
5 euclidean := aVSite position distanceTo: anotherVSite position.
6 euclidean - aWeight ]

Listing 14. Power Weighted distance

1 initialize
2 super initialize.
3 method := self useDistance: self powerWeighted

Listing 15. Initialization of the distance object

1 distanceFrom: aVPoint to: anotherVPoint weight: aWeightNumber
2 ^ self method value: aVPoint value: anotherVPoint value: aWeightNumber

Listing 16. Computation of the weighted distance

1 distanceFrom: aVPoint to: anotherVPoint
2 ^ self distanceFrom: aVPoint to: anotherVPoint weight: nil

Listing 17. Computation of the unweighted distance

1 distance := VDistance new distanceFrom: aSite to: anotherSite

Listing 18. Usage of the distance object
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6 Conclusions, Limitations & Future Work

6.1 Limitations

The system is constrained at a single level of hierarchy in treemaps, meaning only voronoi diagrams can be

visualized. Despite recursion is supported in the model, it is not implemented for the remaining parts.

Test-Driven Development (TDD) in Pharo promotes writing tests before the code implementation by allowing

developers to create tests before the functionality even exists. By running the tests, an exception about the

missing functionality is raised, and from within the exception window, we can start the implementation and

continously re-run only the part of tests that are failing, until it passes, exploiting the re�ective nature of the

language argumented in Section 2. While Pharo's rapid development cycle accelerates a new codebase creation,

this fast pace with frequent changes in the model would have make a strictly TDD approach challenging to

maintining the test coverage. As it may be di�cult to keep tests aligned with the evolving architecture, specially

for newcomers to the language and the framework.

The re�ection capabilities of the language can be intimidating for newcomers, as it allows to change the

system in a way that could potentially break it, e.g. editing a common named message over the wrong scope.

Triangulations are not automatically implemented, but as seen in Figure 21, the system is capable of visu-

alizing the circumscribed circles of a triplet of sites by manually using the context menu discussed in Section 4.

6.2 Future work or Possible Developments

I see much potential in spreading the adoption of Voronoi treemaps in industry if incorporated within the

Continuous Integration part of the operation processes in the modern software development lifecycle of the

devops methodology. Plugins for SonarQube could be developed and the progressive computing nature of the

Voronoi diagrams allows for incremental computation as the codebase grows. Such incremental steps, which

could be associated with e.g. commits [12], could be saved in artifact repositories. This could potentially address

the before mentioned proposal.

Otherwise, it would be interesting to explore the possibility to integrate such visualization tool in mainstream

IDEs e.g. Visual Studio Code or IntelliJ IDEA through plugins. Granting the user a live changing diagram

would be a great asset.

6.3 Conclusions

In this document, I reported the development of a package in Pharo aiming to visualize Voronoi diagrams in

a treemap context. Understanding the context of the problem was crucial to design the model, and building

a background of the previous work in the �eld was a great asset. The problem was tackled with multiple

approaches, and interesting design implementation choices were chosen to make the system more scalable and

maintainable. Pharo as a language is a great tool providing immense introspection capabilities, which combined

with the Roassal visualization engine, allowed to create a powerful system to visualize diagrams. Such power

can be used to create elegant solutions to complex problems, but can also be intimidating when so much freedom

and power is given to the developer. This is a positive feedback for our initial intuition and a good motivation

for future work.
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Appendices

A Toolkits

Hereby, it is provided all the code that is not strictly related to the implementation of the system, but was used

to create the visualizations and the UML diagrams about the technologies used.

PlantUML scritps used to generate the UML class diagrams for the design patterns are available at the

GitHub repository of the thesis, on the latex/images folder.

The Pharo script used to generate the system UML custom class diagram was partly obtained by the script

in Listings 19, and partly by modifying the image code to remove the attributes and methods of the classes.

1 builder := RSUMLClassBuilder new.
2 builder classes: VRoot withAllSubclasses.
3 marker := (RSShapeFactory arrow
4 extent: 20@25;
5 noPaint;
6 withBorder) asMarker offset: -7.
7 builder renderer edgeBuilder: (RSLineBuilder horizontalBezier
8 width: 2;
9 dashArray: #(4);

10 capRound;
11 attachPoint: (RSHorizontalAttachPoint new startOffset: 20);
12 markerStart: marker).
13 builder layout horizontalTree
14 verticalGap: 50;
15 horizontalGap: 100.
16 builder build.
17 builder canvas open

Listing 19. Snippet to create class diagram of the system

The Pharo script to reimplement the online example provided from Ian VanderSchee [14] is the following:

1 diagram := VDiagram new.
2 vA := VSite newFrom: (-6 @ 7) * 10.
3 vB := VSite newFrom: (-6 @ -3) * 10.
4 vC := VSite newFrom: (2 @ 5) * 10.
5 boundPoly := GPolygon vertices: { vA . vB . vC }.
6 boundRect := boundPoly encompassingRectangle.
7 diagram rootRegion polygon vertices: boundRect vertices.
8 diagram addSite: vA; addSite: vB; addSite: vC.
9 diagram show.

Listing 20. Snippet to recreate the online example [14]
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