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Abstract

Correctly and consistently orienting a set of normal vectors associated with a point cloud
sampled from a surface in 3D is a difficult procedure necessary for further downstream
processing of sampled 3D geometry, such as surface reconstruction and registration. It is
difficult because correct orientation cannot be achieved without global considerations of
the entire point cloud. We present an algorithm to orient a given set of normals of a 3D point
cloud of size N , whose main computational component is the least-squares solution of an
O (N ) linear system, mostly sparse, derived from the classical Stokes’ theorem. We show
experimentally that our method can successfully orient sets of normals computed locally
from point clouds containing a moderate amount of noise, representing also 3D surfaces
with non-smooth features (such as corners and edges), in a fraction of the time required by
state-of-the-art methods.
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1 Introduction

3D reconstruction from point clouds has been the subject of intense research for at least three decades, the
primary objective being to construct a surface from a set of 3D samples of that surface, typically the output
of a scanning process. Many variants of the problem exist, depending on what additional information is
available. For example, if each point sample is accompanied by the surface normal vector at that point,
which sometimes can also be measured by the scanning device, the problem becomes easier, as this gives
additional information on the plane tangent to the surface at that point, and the direction pointing “outside”
the volume enclosed by the surface.

Figure 1: We advocate that normal computation for a 3D point cloud can be achieved by computing the normal at
each point based on local information only, resulting in random “inside”/“outside” orientations, and then consistently
orienting them to all be “outside” by a global procedure which involves just the solution of a linear system. We visualize
this on the Hand point cloud (sampled from the Hand triangle mesh) as follows: black lines are the “ground truth”
normals computed from the original triangle mesh, green and red lines are the locally-computed normals, where
normals in green are correctly oriented and those in red are incorrectly oriented. (Left) Unoriented locally-computed
normals and histogram of the distribution of angles between these normals and ground truth normals in the range
[0, 180◦]; approximately half of them are incorrectly oriented. (Right) Same locally-computed normals correctly oriented
after running our simple global procedure. These oriented local normals are a very good approximation to the ground
truth normals, as can be seen in the distribution of angles between these normals and the ground truth in the range
[0, 90◦], which is concentrated in the interval [0, 15◦]. We conclude that there is really no need to compute the normals
themselves globally.
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As the normal vector at a point depends primarily on the local behaviour of the surface at that point,
its direction as perpendicular to the tangent plane is relatively easy to estimate. This is typically done by
approximating the tangent plane based on the point and a small number of its closest neighbors in the
cloud. Principal Component Analysis (PCA), numerically performed using singular value decomposition
(SVD), can detect the two principal vectors spanning this small subset, defining the tangent plane. The third
vector is then the direction of the normal to this plane [5]. While easy, this method cannot tell the correct
“orientation” (i.e., the sign) of the normal vector, namely whether it points “inwards” or “outwards” at that
point. This characteristic is global, in the sense that all normal vectors need to be considered and oriented
consistently throughout the point cloud in order to determine the correct orientation of each individual
normal. More sophisticated local techniques for estimating surface normals in the presence of noise [14, 3]
or those based on higher order differential properties [1] exist, but these are also local, and cannot reveal the
correct orientations. The interested reader is referred to Sanchez et al. [16] for a comprehensive survey of
local normal estimation techniques.

This paper, as some before, assumes that sufficiently accurate estimation of normals up to their orienta-
tion is, in practice, a solved problem, and attempts to solve only the remaining global orientation problem.
This is demonstrated also in Figure 1. Thus, we present a method to consistently orient given normal vectors
of a point cloud, which may have arbitrary (i.e., incorrect) orientations. This is done by generating and
solving a set of (overdetermined) linear equations for the signs of the given vectors. The equations are derived
from the well-known vector analytic theorem due to Stokes, involving the integral of the inner product of
certain 3D functions with the normal vector over the entire surface. Approximating these integrals by a
discrete sum generates the linear equations. Consequently, requiring just the (least squares) solution of a
typically sparse linear system, our method is orders of magnitude faster than other methods, which tend to
resort to the solution of large global non-linear optimization problems.

2 Related work

Estimating normals for a point cloud is a well-understood problem and there exist many local methods
to do this. However, the local methods typically fail to orient the normals correctly, as this requires global
information to guarantee consistency throughout the point cloud (i.e., all normals point “outwards”), thus
need some extra effort. Normal orientation methods may be classified into two approaches: propagation
methods and global methods. Propagation methods start at some point in the cloud and “greedily” traverse
the cloud while orienting the normals associated with each point in turn in a serial manner so that all
normals seen so far are aligned. Starting with the early work of Hoppe et al. [5], which does not do too well on
challenging inputs, more sophisticated propagation techniques have been developed over the years [9, 17, 6],
culminating in the method of Metzer er al. [13]. which combines local propagation within small “patches”
of points with a final semi-global step based on a “dipole” electric field induced by all previously oriented
patches. Global methods are more elaborate, typically solving a global optimization problem, thus require
more computational effort than propagation methods, especially on large inputs. The most recent “Globally
Consistent Normal Orientation” (GCNO) method of Xu et al. [18] does precisely this, relying on the fact that
a consistent orientation of the normals leads to an accurate computation of so-called winding numbers
of the shape, essentially defining well the partition of space into the interior and exterior of the 3D object.
The winding number of a point c = (cx , cy , cz ) relative to a closed 2-manifold S ⊂R3 enclosing a volume V ,
namely S = ∂ V , is defined as

w (c ) =
1

4π

∫∫

p∈S

(c −p ) · n̂ (p )
∥c −p∥3

ds (p ) =







1, c ∈V ,
0.5, c ∈ S ,
0, c /∈V ,

(1)

where n̂ (p ) is the unit normal vector at p ∈ S , “·” is the inner product operator, and ds (p ) is the (area of the)
surface element at p . The observant reader familiar with physics will note that the integrand (c−p )·n̂ (p )

4π∥c−p∥3 is just

the (scalar) electric potential at p induced by a dipole at c polarized in the direction of the normal n̂ , and
the (vector) dipole itself, c−p

4π∥c−p∥3 , is the gradient of the fundamental solution of the 3D Laplace equation

centred at c [4],

Φ(p ) =
1

4π∥c −p∥
,
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which is harmonic everywhere except at the pole c , thus the dipole has vanishing divergence in any region
not containing c . Equation (1) is sometimes called the Gauss formula [11, 10] or Gauss’s Law [2] (related to
the divergence theorem) and may be approximated in the discrete setting as a finite sum over the N points pi

having 3D coordinates (xi , yi , zi ) and their normals n̂i sampled from the surface,

w (c )≈
1

4π

N
∑

i=1

Ai
(c −pi ) · n̂i

∥c −pi ∥3
,

where Ai is the surface area associated with pi . The Gauss formula is frequently used to determine whether
a given point is inside or outside a closed surface in 3D, and Lu et al. [11] and Lin et al. [10] have used this
formula, especially the case of c on S , for surface reconstruction purposes. We provide these details because,
as we shall see later, our approach is conceptually related to these methods in that it relies heavily on the
properties of the divergence of certain 3D functions, especially those which are divergence-free (i.e., have
vanishing divergence).

3 Applying Stokes’ theorem

Our method will make extensive use of the well-known Stokes’ theorem in vector analysis [2]. Assume a
2-manifold S ⊂R3 with a boundary B and a function G : R3→R3 possessing continuous first-order partial
derivatives, namely, G = (Gx (x , y , z ),Gy (x , y , z ),Gz (x , y , z )). Then its curl through S is equal to its contour
integral over B ,

∫∫

S

(∇×G ) ·dS =

∮

B

G ·dB . (2)

The direction of positive circulation of B and the direction of positive flux through S are related by a right-
hand-rule, namely, the fingers circulate along B and the thumb points in the direction of the positive flux.

As a matter of notation, note that the differential dS in (2) is equivalent to n̂ (p )ds (p ) in (1). Note also
that the surface S should be continuous, but not necessarily smooth, as long as the two integrals in (2) exist.
A more explicit version of (2) is the following. Denote F =∇×G , namely,

F =∇×G =
�

∂Gz

∂ y
−
∂Gy

∂ z
,
∂Gx

∂ z
−
∂Gz

∂ x
,
∂Gy

∂ x
−
∂Gx

∂ y

�

,

then
∫∫

S

�

Fx dy dz + Fy dz dx + Fz dx dy
�

=

∮

B

�

Gx dx +Gy dy +Gz dz
�

. (3)

In the discrete case, the surface integral in (2) can be approximated by a sum over the N samples
pi = (xi , yi , zi ) of the surface S , where each inner product of F =∇×G evaluated at that point with the unit
normal n̂ at the point is weighted by the area Ai that the sample represents,

∫∫

S

F ·dS ≈
N
∑

i=1

Ai

�

F (xi , yi , zi ) · n̂i

�

.

Similarly, the contour integral in (2) can also be approximated by a discrete sum. We now elaborate on
two special cases of Stokes’ theorem that we will use in our approach.

3.1 The homogeneous case

The first special case of (2) arises when the surface S is closed, namely, has no boundary. Then (2) reduces to
∫∫

S

(∇×G ) ·dS = 0.

The observant reader will notice that this is also a consequence of the divergence theorem [2], due to the
identity

∇· (∇×G ) = 0, (4)
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Figure 2: Norm of a compactly supported 3D function F c of type (7) on the Bunny model bounded by a unit cube for
(left) c = (0.9, 1.25, 1.5)with density 4689/10000 and (right) c = (−0.5, 1.0,−1.0)with density 4073/10000.

namely,∇×G is always divergence-free for any 3D function G [2].
Now, if we are given a set of N unoriented normals n̂i for the samples pi = (xi , yi , zi ) and we aim to orient

them correctly, then we can take a suitable 3D function G , derive F =∇×G , and seek signs si ∈ {+1,−1},
such that

N
∑

i=1

Ai

�

F (xi , yi , zi ) · n̂i

�

si = 0. (5)

This is a single homogeneous linear equation in the N unknowns si , and we will need many more to solve for
a reliable solution. Fortunately, any number of such equations can be generated by using different functions
G , although care must be exercised to not use functions which are linearly dependent on each other, as these
will not add any new information (i.e., independent equations). For example, using G 1(x , y , z ) = (y ,−z , x ),
G 2(x , y , z ) = (−y 2, z 2, x 2) and G 3(x , y , z ) = (3y 2 − y ,−3z 2 + z ,−3x 2 − x ) will create only two independent
equations of the type (5).

A simple way to generate an essentially unlimited number of linearly independent functions, via a
parameter c = (cx , cy , cz ) ∈R3, which we call the center of the function, is to consider

G c (x , y , z ) =
�

1

r
,

1

r
,

1

r

�

, r (x , y , z ) =


(x , y , z )− (cx , cy , cz )


,

so that

F c (x , y , z ) =∇×G c (x , y , z ) =
� (y − cy )(z − cz )

r 3
,
(z − cz )(x − cx )

r 3
,
(x − cx )(y − cy )

r 3

�

. (6)

The proof that {F c j : j = 1, . . . , m} is a linearly independent set of functions for all m is elaborate because of
the multivariate nature of the functions. We will just remark that this would be obvious in the 1D case, where

G c (x ) = 1
|x−c | , by examining the Wronskian [4] of

�

F c j = dG c j

dx : j = 1, . . . , m
	

, that is, the determinant of the
matrix formed by these m functions and their first m −1 derivatives. It is well-known that a set of functions
is linearly independent if its Wronskian is not the constant zero function. Since the Wronskian in this case is
just the determinant of a Vandermonde matrix multiplied to the left and to the right by diagonal matrices, it
is indeed a non-zero function, if and only if all the c j are distinct. Note that F c j is supported on all of R3,
which makes for a dense set of equation coefficients.

Since sparse linear systems are more desirable than dense ones, it is advantageous to use functions F
with compact support. This can be done using the smooth cubic B-Spline B : R→R, which is supported
on [−2, 2],

B (t ) = 1
12

�

|t +2|3−4|t +1|3+6|t |3−4|t −1|3+ |t −2|3
�

,

and defining, for example,
G c (x , y , z ) =
�

B (y − cy ), B (z − cz ), B (x − cx )
�

,

F c (x , y , z ) =∇×G c (x , y , z ).
(7)

By taking m distinct centres {c1, . . . , cm}, the resulting linear system is then

M s = 0, (8)

where the m ×N matrix M is defined as

M j ,i = Ai

�

F c j (xi , yi , zi ) · n̂i

�

.

Depending on the position of c j relative to the point cloud, using the resulting F c j (x , y , z )will give a sparse
equation for si , since the values of F c j (xi , yi , zi )will vanish on many of the points in the cloud. This equation
will, albeit, still be homogeneous. See Figure 2 for some examples of these functions.
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Figure 3: Voronoi polygons associated with the 10000-point Bunny cloud. The polygons are in black (triangulated in
yellow). Note that they do not form a seamless surface, as expected.

3.2 The non-homogeneous case

To solve for s = (s1, . . . , sN ) requires constructing equations of the type (5) with appropriate functions F , either
dense or sparse. As we will see later, these are augmented by a sparse set of N homogeneous regularization
equations based on a Laplacian operator derived from the point cloud, so the number of equations is larger
than N , and should be solved for s in the least squares sense. However, the fact that the system is homogen-
eous complicates matters, as it permits the trivial solution s = (0, . . . , 0), and eliminating this requires solving
an eigensystem. It would be much better if we were able to generate some
non-homogeneous equations, namely those with a non-vanishing right-hand
side. We propose to do this by returning to the general version of Stokes’
theorem (2) with a non-vanishing right-hand side. This requires operating on
a surface with a boundary. To achieve this, we cut through the surface with
a cut-plane P (see inset) and identify the boundary B of the resulting open
manifold(s). Assume without loss of generality that P is a an x -y -parallel
plane z = z0. Then (3) becomes

∫∫

S above P

F ·dS =

∮

B

Gx (x , y , z0)dx +

∮

B

Gy (x , y , z0)dy ,

with a similar equation for the portion of S below the cut-plane P .
In the discrete case, if B is approximated by the (counter-clockwise) 2D polygon Q = (q 1, . . . , q k )with k

vertices, the two complementary non-homogeneous equations are

∑

pi above P

Ai

�

F (xi , yi , zi ) · n̂i

�

si =
k
∑

i=1

1

2

�

Gx (q
i ) +Gx (q

i+1)
�

(q i+1
x −q i

x ) +
k
∑

i=1

1

2

�

Gy (q
i ) +Gy (q

i+1)
�

(q i+1
y −q i

y ) (9)

and

∑

pi below P

Ai

�

F (xi , yi , zi )·n̂i

�

si =−
k
∑

i=1

1

2

�

Gx (q
i )+Gx (q

i+1)
�

(q i+1
x −q i

x )−
k
∑

i=1

1

2

�

Gy (q
i )+Gy (q

i+1)
�

(q i+1
y −q i

y ), (10)

where the vertex q k+1 is taken to be identical to q 1. Similar equations may be written for cut-planes which
are x -z -parallel or y -z -parallel, or even for cut-planes at arbitrary orientations.

4 Implementation details

Our normal orientation method consists of setting up a sufficient number of homogeneous and non-
homogeneous linear equations for the variables si associated with the unoriented normals and then solving
them in the least squares sense. In this section we elaborate on some of the details of implementing this in
practice.
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Figure 4: Polygonal boundaries of the cross-sections of the Bunny and Hand models at three different planes. Note that
some have multiple contours.

4.1 Estimating areas

To set up the equations in (5), (9), and (10), we first need to determine the value of Ai , the surface area
associated with the point pi having coordinates (xi , yi , zi ). A straightforward way to do this is to approximate
it with the area of the Voronoi polygon associated with this point in the Voronoi diagram constructed from the
point and a fixed number (say 12) of its nearest neighbors, when projected to the approximate tangent plane
at that point, when computed as usual using PCA. Figure 3 shows these Voronoi polygons for a point cloud
of 10000 points sampled from the Stanford Bunny model. Note that these Voronoi polygons themselves
may be viewed as a coarse approximation to the sampled surface, but are far from sufficient for a good
reconstruction, if that is the objective.

4.2 Identifying cross sections

To set up the equations in (9) and (10), we have to be able to extract a 2D planar boundary of the cross-section
of the point cloud when cut with a plane. We do this by identifying all cloud points within a very small
distance of the plane (which is a parameter), projecting them to the plane, and applying a Travelling Salesman
Problem (TSP) algorithm [12] to each of the connected components of a k -nn graph (we found that k = 6 is a
good choice) of this subset to order them into a set of closed 2D contours. It is desirable that the contours be
significant, namely contain a large enough number of points. In practice, it is wise to discard cut-planes
which result in a small number of contour points.

Note that the boundary may consist of multiple polygons, or nested polygons, which does not change
anything in the theory, except that the right-hand-side of the linear systems (9) and (10) is computed as the
sum of contour integrals over all the contours, when they are all oriented consistently. A consistent orientation
is achieved when the outermost contours are counter-clockwise with respect to the cut-plane normal in the
direction in which the relevant portion of the point cloud resides, and inner
contours have alternating orientations as they nest deeper. Distinct contours
that are so close that they “merge” into one in our processing do not pose
a problem, since the sum of the contour integrals of two touching contours
is the same as a single contour integral of the combined contour (see inset),
except if two nested contours are everywhere so close to each other that they
are detected as a single contour. The latter may occur for thin-shelled objects, if the sample distance is above
the thickness of the shell, and we did not encounter this case in our experiments. See Figure 4 for some
boundaries extracted from some cut-planes of the Bunny and Hand point clouds.

4.3 Choosing F

To generate functions F to use in equations (5), (9), and (10), a number of techniques may be employed. The
key requirement, as seen in (4), is that F has vanishing divergence in the volume enclosed by the manifold S ,
that is, ∇ · F = 0. The first technique is the method described in Section 3 and which we use in practice:
take F to be∇×G for a reasonable G . This also has the advantage of being able to use G for the contour
integral in (3) in the non-homogeneous case.

A second possibility is taking F =∇Φ=
�

∂ Φ
∂ x , ∂ Φ∂ y , ∂ Φ∂ z

�

, where Φ: R3→R is harmonic in R3. Then,∇· F =
∇2Φ= 0, by definition. An example of a parametric family of such functions is the 3D potential, featuring
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in (1), parameterized by its “center” c ,

Φc (x , y , z ) =−
1

r
, r (x , y , z ) =



(x , y , z )− (cx , cy , cz )


, F c (x , y , z ) =
�

x − cx

r 3
,

y − cy

r 3
,

z − cz

r 3

�

.

Note that these functions are harmonic at all points except c , which is the reason why the integral (1) vanishes
only if c /∈V , as only then∇· F vanishes in all of V .

A third, but more complicated, possibility [15] arises from considering two well-behaved scalar functions
u (x , y , z ) and v (x , y , z ) and defining

F =
�

∂ u

∂ y

∂ v

∂ z
−
∂ u

∂ z

∂ v

∂ y
,
∂ u

∂ z

∂ v

∂ x
−
∂ u

∂ x

∂ v

∂ z
,
∂ u

∂ x

∂ v

∂ y
−
∂ u

∂ y

∂ v

∂ x

�

.

Then it is easy to see that∇· F = 0.
The second and third options for generating F may be used primarily for the homogeneous case, since

then no contour integrals are required.

4.4 Setting up the equations

To orient a cloud of N 3D points, we need to set up a non-homogeneous linear system having rank at
least N , certainly containing at least N equations. Rank N − 1 is obtained from a Laplacian matrix used
for regularization (see below), so not many more are required in theory to obtain full rank. However, more
equations are needed to force a consistent orientation of the normals.

We found that in practice, for “easy” inputs, namely point clouds with relatively simple and smooth
shapes, which are sampled uniformly and regularly, it suffices to take few homogeneous equations of the
type (5), using the family of parametric compactly-supported functions described in (7). The parametric
centres are taken as random points within the sphere enclosing the point cloud. A few more pairs of non-
homogeneous equations of the type (9) and (10) are taken using the parametric family of functions described
in (6). These equations are generated using centres for very few cross-sections, sometimes even just one
cross-section suffices.

For more challenging inputs, especially those with irregular sampling patterns and density, also those
containing sharp edges and corners, many more equations are needed, sometimes up to three cut-planes
along each of the three major axes, each generating O (N ) non-homogeneous equations of type (9) and (10),
along with O (N ) homogeneous equations of type (5) (one per center).

These linear equations are augmented with a regularization component based on the (combinatorial)
Laplacian matrix L of the k -nearest neighbor graph of the point cloud. Typically we take k = 10. This
additional homogeneous set of 3N equations forces some degree of continuity on the three components of
the oriented vectors si n̂i ,

R s = 0,

where

R =





diag(n̂x )
diag(n̂y )
diag(n̂z )



L ,

with diag(v ) denoting the diagonal matrix whose diagonal entries are taken from the vector v , and n̂x , n̂y , n̂z

denoting the vectors of the x -, y -, and z -components of the normals n̂1, . . . , n̂N .
The Laplacian equations are weighted by the average area per point, that is, by mean(Ai ). The complete

set of O (N ) linear equations, which may be very sparse, is then solved for the vector s by least squares and
the desired orientation signs are obtained as sign(si ).

4.5 Filtering the solution

In practice, the discretization of the surface integral (2) to the discrete setting, and the transition from a
continuous value of the solution si to the discrete set {+1,−1} inevitably introduces noise into the solution,
which could result in a “sprinkling” of incorrect orientations in the solution. Although we observed that
there is typically a healthy concentration of the values of the si around the desirable values of {+1,−1}, there
may be some values of si close to zero, thus risking a mis-classification of their sign. Fortunately, this “noise”
can be filtered out by requiring that the orientation of each resulting normal agrees with the orientation of
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Table 1: Experimental results for our algorithm vs. the GCNO algorithm on the inputs of Figure 5.

our algorithm GCNO algorithm

dataset points
cut-

planes
non-

homogeneous
equations per

cut-plane

homogeneous
equations

solve
runtime

(secs)

incorrect
orientations

after solve

incorrect
orientations

after filter

solver
iterations

solve
runtime

(secs)

incorrect
orientations

after solve

incorrect
orientations

after filter

Banana 2984 1 100 50 0.2 1 0 15 280 9 0
Eight 3070 1 200 100 0.6 24 0 13 446 1 0

Cylinder 4802 1 10 0 0.4 1 0 11 660 3 2
Hand 5111 6 1500 2000 67.4 54 2 27 950 82 27
Venus 8268 1 40 20 0.7 15 0 20 1140 18 1
Bunny 10000 2 1000 500 38.5 30 0 23 2340 1 0

Banana Eight Cylinder Hand Venus Bunny

Figure 5: Datasets used to test our algorithm.

the average normal of its nearest neighbors. This is forced iteratively in a small number of passes over the
cloud and will typically eliminate all such noise. Note that this simple procedure can combat only a very
small amount of random noise and is far from sufficient on its own to consistently orient close to half of the
original input set of randomly oriented normals.

5 Experimental results

We have implemented the algorithm described in this paper in non-optimized MATLAB code and run it
on a number of representative inputs using a Windows 11th Gen Intel i7 machine containing 4 cores with
32 GB RAM. We have compared the orientations that it produces and the corresponding runtimes with the
state-of-the-art GCNO algorithm of Xu et al. [18], which is compiled C++ code solving a global non-linear
optimization problem, kindly published by the authors at https://github.com/Xrvitd/GCNO.

We feed our algorithm unoriented normals which are obtained from MATLAB’s pcnormals routine for
point clouds, which essentially computes them from the tangent plane derived from the nearest neighbors
of each point. Our algorithm takes as parameters the number of cut-planes (alternating along the x , y , z
directions), the number of centres per cut-plane for generating pairs of non-homogeneous equations (9)
and (10), and the number of centres for generating the sparse homogeneous equations (5). Cut-planes
with the same orientation are equally spaced (in parallel) throughout the bounding box of the point cloud.
Cut-planes yielding a very small number of contour points (e.g., when they pass between model components
or just graze the surface) are discarded.

For each run, we counted the number of incorrectly oriented normals generated by the algorithm,
as compared to the ground truth, and the number of such normals after the noise filtering phase. The
ground truth was computed from the original triangle mesh version of the data set, where the triangles are
consistently oriented and a vertex normal is defined as the average normal of the faces incident on the vertex.
A normal is considered oriented correctly, if and only if the angle between it and the ground truth normal is
less than 90 degrees, or, equivalently, their scalar product is positive. In practice, approximately half of the
initial (locally-computed) normals are correctly oriented.

The main computational bottleneck of the algorithm is the solution of the linear system. We used
MATLAB’s iterative lsqr routine, which is an adaptation of the conjugate gradient method, as this is considered
the most efficient when the system is sparse. Iteration is terminated at the earliest among achieving relative
tolerance of 10−6 or 2500 iterations.

Figure 5 shows renderings of the models we experimented with. These are originally triangle meshes
(from which the ground truth normal orientation were computed), but only the point set was used as input
to the normal orientation algorithm.
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Figure 6: (Left) Output of our algorithm vs. (right) output of GCNO on the Cylinder and the Bunny model. Note how,
while many of the normals computed by GCNO point outwards from the Cylinder surface (so are correctly aligned with
the ground truth), they have still not converged to their correct directions.

Banana Eight Cylinder Hand Venus Bunny

Figure 7: Distributions of the values in the solution vectors on the inputs of Figure 5. Note the good concentration
around the desired values ±1 (marked as black lines).

Table 1 shows the results of running our algorithm and the GCNO algorithm on these inputs. GCNO
employs an iterative optimization solver which is initialized with random normals and terminates after a
max number of iterations or a tolerance on the gradient. For a fair comparison between the two methods,
we monitored the progress of GCNO and stopped it when the output seemed to be close to the ground truth,
and then ran that output through the same post-processing noise filtering routine we used on our outputs.
The table shows that our algorithm obtains almost perfect results, yet the solver runs in orders of magnitude
less time than that of the GNCO solver, especially on the easier models. For example, the Cylinder model,
which contains 4802 points, is relatively easy, the only difficult part being the creases around the two bases.
Our algorithm correctly orients the locally-computed normals of this model in 0.3 seconds, whereas GNCO
requires 660 seconds to compute its output. As evident in Figure 6, while all but two of the resulting GCNO
normals point outwards from the Cylinder, many of them still have not converged to the correct direction
(radial to the Cylinder’s main axis). This is true also for portions of the Bunny model, most notably the ear,
which is challenging due to the presence of high curvature.

Figure 7 shows the distribution of the entries of our solution vector s . Note the good clustering around
the desired values of ±1.

5.1 The correct number of equations

It is not that obvious how to determine a priori the correct number of equations of types (5), (9), and (10)
required beyond the 3N sparse regularization equations due to the point cloud Laplacian. Certainly it
does not hurt to use more than what is needed, although this could be wasteful in runtime. To illustrate
this tradeoff, we ran our algorithm with different numbers of equations on the 10000 point Bunny model
with locally estimated normals, as summarized in Table 2. We started with one cut-plane with 500 non-
homogeneous equations and 250 homogeneous equations. This did not orient all the normals correctly, and
increasing the number of equations with this single cut-plane did not seem to make much difference, while
increasing runtime. A difference was made when we added another cut-plane, resulting in a correct solution
with a solve time of 38.5 seconds. Certainly adding more equations to this also yielded perfect results, albeit
at an unnecessarily longer runtime. We note that the base 30000 regularization equations are extremely
sparse, thus have minimal effect on the runtime. Most of the runtime is due to the dense non-homogeneous
equations.

Some of the difficulty in orienting the normals correctly is due to the noise in the local estimates of the
normals and the areas associated with the points, especially in poorly sampled regions of the model. To
gauge this sensitivity, we ran our algorithm on the Bunny, when using as input randomly oriented ground
truth normals (computed from the triangle mesh). As expected, the algorithm performed better on this
input, correctly orienting these normals in 15.1 seconds at our first attempt with just one cut-plane with
500 non-homogeneous equations and 250 homogeneous equations. These results are also documented in
Table 2.
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Table 2: Experimental results of running our algorithm on the Bunny dataset using different numbers of equations.
Normals are either estimated locally or the ground truth. The bold values mark the configuration used for the Bunny in
Table 1.

locally estimated normals ground truth normals

cut-
planes

non-
homogeneous
equations per

cut-plane

homogeneous
equations

total number
of equations

(excl. Laplacian)

solve
runtime

(secs)

incorrect
orientations

after solve

incorrect
orientations

after filter

solve
runtime

(secs)

incorrect
orientations

after solve

incorrect
orientations

after filter

1 500 250 750 17.2 58 10 15.1 22 0
1 1000 500 1500 37.1 49 8 35.0 14 0
1 1000 1000 2000 38.3 50 7 36.5 10 0
1 2000 1000 3000 43.5 35 6 40.0 0 0
2 1000 500 2500 38.5 30 0 33.7 0 0
2 2000 1000 5000 45.6 25 0 40.6 0 0
2 2000 5000 9000 64.7 7 0 58.9 0 0

Figure 8: The effect of limiting the number of lsqr linear solver iterations on the Bunny point cloud: (left) solver runtimes
as a function of the number of iterations; (right) number of incorrect normal orientations after the solve and after the
subsequent noise filter as a function of the same.

5.2 Solver accuracy

Another way to reduce runtime, but without reducing the number of equations, is to limit the number of
iterations performed by the linear solver. Since the solution is anyway “snapped” to its sign, it is probably
not that important to seek a very accurate solution to the equations. Our implementation limits the solver to
2500 iterations (and in most cases it stops earlier due to the alternate tolerance termination parameter), but
this could presumably be reduced to less without causing much damage.

Figure 8 shows the effect of limiting the linear solver to a number of iterations ranging between 200 and
2200 on the Bunny point cloud, both in terms of the solver runtime and the number of incorrect normal
orientations after the solve and after the subsequent noise filter. While it requires 2200 solver iterations (38.5
seconds) to perfectly orient the 10000 normals of this input, the number of incorrect orientations is a mere
16 after 1400 iterations (24.6 seconds), which in most applications can absolutely be tolerated.

5.3 Sensitivity to noise

To measure our algorithm’s sensitivity to noise, we ran the same datasets after adding random noise of 1%
of the unit cube bounding box to each of the point cloud coordinates. This revealed reasonably robust
behaviour. For example, on the noisy Cylinder model, all normals were correctly oriented using one cut-plane
with 50 centres (100 non-homogeneous equations) and 50 homogeneous equations, running in 0.6 seconds.
This compares to one cut-plane with 10 centres and no homogeneous equations, running in 0.4 seconds, for
the clean model. On the noisy Venus model, all normals were correctly oriented using three cut-planes with
20 centres (40 non-homogeneous equations per cut-plane) and 20 homogeneous equations, running in 0.9
seconds. This compares to one cut-plane with 20 centres and 20 homogeneous equations, running in 0.7
seconds, for the clean input.
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5.4 Surface reconstruction

Some works on normal orientation have demonstrated the quality of their results by performing surface
reconstruction from the point cloud and the oriented normals that they have computed, typically using a
variant of the Poisson reconstruction algorithm [7, 8]. A high quality reconstruction is considered validation
of the normal computation and orientation output. We believe that, while surface reconstruction is one
way to evaluate the normal generation routine, it is somewhat subjective, and prefer, as we have done, to
just examine the raw output, as it may be used in more than just surface reconstruction in downstream
processing.

6 Discussion

We have described an algorithm for consistently orienting a given set of normals of a 3D point cloud. Our
main contribution is to formulate a set of linear equations for the orientation signs. Although we solve
for “relaxed” continuous values, snapping the values to their signs yields very good results. The number of
equations required to generate a reliable and robust solution seems to be, as expected, dependent mostly on
the shape “complexity”, namely, the number of protrusions, corners, and edges, and the sampling density
and regularity. It is much less dependent on the total number of samples. In easy cases, a single cut-plane
suffices. For more complex shapes, multiple cut-planes per each of the three axes are required to capture
the shape.

We use MATLAB’s built-in linear least squares lsqr iterative solver in our implementation, as this is
efficient for sparse linear systems such as those we generate. This solver is limited, though, to linear systems
of up to 50000 equations or so. In a more efficient implementation, it should be possible to employ much
faster linear solvers, which are a well-understood “commodity” in the scientific computing community,
especially for sparse systems and parallel computing environments, resulting in a very fast procedure, even
for extremely large datasets.

We solve for N orientation signs for a set of given normal vectors of a point cloud, the latter typically
coming from a standard local procedure. It may be possible to go further than we do, using the same linear
machinery to solve for the normals themselves, as opposed to just their signs. As with the GCNO algorithm,
this would allow to compute normals from scratch for a given set of 3D points: instead of solving for just N
signs, we would solve for 3N values, the three components of each of the N normal vectors. Note that
these are three independent values per normal, since the length of the normal would encode the area Ai

associated with the i -th point. However, we do not believe the quality of normals computed in a global
manner this way would be better than those computed locally and then consistently oriented, which, as we
have demonstrated, is feasible and gives excellent results.

Lastly, we note that our method can be applied also to normals of 3D point clouds sampled from manifolds
which are not closed, namely have inherent boundaries, as Stokes’ theorem applies to this scenario as well, as
long as the boundaries and their correct orientations are given or can be detected automatically in the point
cloud. In this case, the equations must take these boundaries into account as an additional contour integral
in the right-hand side of the equations, similar to (9) and (10), thus all equations become non-homogeneous.
It is also best that cut-planes not intersect these boundaries, so that the boundaries impact the right-hand
side of only (9) or (10).
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