
A new stable method to compute mean value coordinates
Chiara Fuda · Kai Hormann

Abstract

The generalization of barycentric coordinates to arbitrary simple polygons with more than
three vertices has been a subject of study for a long time. Among the different constructions
proposed, mean value coordinates have emerged as a popular choice, particularly due
to their suitability for the non-convex setting. Since their introduction, they have found
applications in numerous fields, and several equivalent formulas for their evaluation have
been presented in the literature. However, so far, there has been no study regarding their
numerical stability. In this paper, we aim to investigate the numerical stability of the algo-
rithms that compute mean value coordinates. We show that all the known methods exhibit
instability in some regions of the domain. To address this problem, we introduce a new
formula for computing mean value coordinates, explain how to implement it, and formally
prove that our new algorithm provides a stable evaluation of mean value coordinates. We
validate our results through numerical experiments.

Citation Info

Journal
Computer Aided Geometric
Design

Volume
111, June 2024

Article
102310, 16 pages

Note
Proceedings of GMP

DOI
10.1016/j.cagd.2024.102310

1 Introduction

Mean value coordinates were initially introduced as a generalization of barycentric coordinates to polygons
and polyhedra [2, 5, 8, 11]. Since then, they have emerged as a valuable tool in a wide range of domains,
such as interpolation, curve and surface modelling in computer graphics, mesh parameterization, the finite
element method, and various other fields. Moreover, they stand out for their capability to extend barycentric
coordinates to the non-convex setting, unlike other commonly used coordinates. For more details about
generalized barycentric coordinates, we refer to Hormann and Sukumar [9].

Let P ⊂R2 be a simple planar polygon with n ≥ 3 vertices v1, . . . , vn arranged in anticlockwise ordering
and v ∈R2 be an arbitrary point in the interior of P . The mean value coordinates [2] of v with respect to P
are defined as

λi (v) =
wi (v)
∑n

j=1 w j (v)
, wi (v) =

1

ri

�

tan
αi−1

2
+ tan

αi

2

�

, i = 1, . . . , n , (1)

with αi ∈ (−π,π) denoting the signed angle at v in the triangle [v, vi , vi+1] and ri = ∥v − vi ∥. Note that indices
are considered cyclically with respect to the range [1, 2, . . . , n]; for example, vn+1 = v1 and α0 =αn .

Floater [2] shows that the coordinate functions λi form a partition of unity,

n
∑

i=1

λi (v) = 1

and can be used to express v as an affine combination of the vertices of P ,

n
∑

i=1

λi (v)vi = v,

which is also referred to as the barycentric property. Besides these defining properties of generalized barycen-
tric coordinates, they can be extended continuously to the boundary of P and this extension satisfies the
Lagrange property

λi (v j) =δi j =

�

1, i = j
0, i ̸= j ,

i , j = 1, . . . , n ,

which makes them particularly useful for interpolating data given at the vertices of P . Moreover, they are
actually well-defined for all v ∈R2\∂ P , positive inside the kernel of P , invariant to similarity transformations
of P , and their extension is linear along the edges of P and smooth except at the vertices vi , where it is
only C 0 [8].

1

https://doi.org/10.1016/j.cagd.2024.102310

While many alternative formulas that are mathematically equivalent to (1) have been proposed in the
literature over the years, a comprehensive investigation of their numerical stability is currently lacking. The
aim of this paper is to change this and to discuss the numerical stability of algorithms that compute mean
value coordinates. After reviewing the related work on mean value coordinates and recalling the various
methods that have been introduced for their computation (Section 2), we show that each formulation can
exhibit numerical instability in certain situations (Appendix C). To address this issue, we introduce a new
formula for expressing mean value coordinates and explain how to properly implement it, so as to prevent
potential numerical issues (Section 3). We then recall the mathematical definition of numerical stability,
specifically in the case of mean value coordinates, and we prove that our new formula provides a stable
way to compute the functions λi (Section 4 and Appendix B). Finally, we validate our results with numerical
experiments and compare the various methods both in terms of numerical stability and efficiency (Section 5).

2 Existing methods for computing the mean value coordinates

Floater et al. [4] note that mean value coordinates are a particular member of a family of three-point coor-
dinates for convex polygons, which can be derived by normalizing a set of weight functions wi that each
depend on three consecutive vertices of P . In this context, they show that mean value coordinates can be
expressed as

λi (v) =
wi (v)
∑n

j=1 w j (v)
, wi (v) =

ri−1Ai ,i+1− ri Ai−1,i+1+ ri+1Ai−1,i

2Ai−1,i Ai ,i+1
, i = 1, . . . , n , (2)

where Ai , j = det(vi − v, v j − v)/2 denotes the signed area of the triangle [v, vi , v j]. The advantage of this
formula over the original definition in (1) is that it avoids the computation of the angles αi and that it gets by
without the use of trigonometric functions.

While mean value coordinates were initially considered only for points inside the kernel of star-shaped
polygons [2], Hormann and Floater [8] prove that they are well-defined for any v ∈R and (sets of) arbitrary
planar polygons without self-intersection. They also propose another way of evaluating mean value coor-
dinates that avoids trigonometric functions. In particular, denoting the dot product of vi − v and v j − v
by Di , j = (vi − v) · (v j − v), using the half-angle formula for the tangent, tan(αi /2) = (1− cosαi)/sinαi , and
recalling that Di ,i+1 = ri ri+1 cosαi and 2Ai ,i+1 = ri ri+1 sinαi , they conclude that the mean value coordinates
in (1) can be written as

λi (v) =
wi (v)
∑n

j=1 w j (v)
, wi (v) =

1

ri

�

ri−1ri −Di−1,i

2Ai−1,i
+

ri ri+1−Di ,i+1

2Ai ,i+1

�

, i = 1, . . . , n . (3)

The advantage of implementing this formula over (2) is that it allows to easily “catch” the case when v is
on the boundary of P , say v = (1−µ)vk +µvk+1 for some µ ∈ [0,1] and some k ∈ {1, . . . , n}, as this happens
if and only if Ak ,k+1 = 0 and Dk ,k+1 ≤ 0. In this case, the mean value coordinates of v are just λk (v) = 1−µ,
λk+1(v) =µ, and λi (v) = 0 for i ̸= k , k +1.

One potential problem with the formulas in (2) and (3) is that the coordinates λi (v) are not well-defined
if Ak ,k+1 = 0 for some k , that is, if v is on the line supporting the edge [vk , vk+1] of P . We can overcome this
problem by using the alternative half-angle formula for the tangent, tan(αi /2) = sinαi /(1+ cosαi), to obtain

λi (v) =
wi (v)
∑n

j=1 w j (v)
, wi (v) =

1

ri

�

2Ai−1,i

ri−1ri +Di−1,i
+

2Ai ,i+1

ri ri+1+Di ,i+1

�

, i = 1, . . . , n . (4)

This formula gives rise to an implementation that has the same advantages as the one derived from (3), but
is well-defined even if Ak ,k+1 = 0 for some k .

All the formulas above have the limitation that they are not well-defined on the boundary of the polygon P
and, moreover, (2) and (3) can be used only if all Ai ,i+1 ≠ 0. This motivated Floater [3] to introduce yet another
formula for mean value coordinates, which is also valid on the boundary, namely

λi (v) =
ŵi (v)
∑n

j=1 ŵ j (v)
, ŵi (v) =σi

Æ

ri−1ri+1−Di−1,i+1

∏

j ̸=i−1,i

Æ

r j r j+1+Dj , j+1, i = 1, . . . , n , (5)

whereσi ∈ {+1,−1} is a sign related to the weight function ŵi . Initially, this formula was presented withoutσi ,
which limits its applicability to points v inside convex polygons, but Anisimov [1, Section 3.2.4] demonstrates

2

polygon absolute error Ea

λk relative error Er

(1) (2) (3) (4) (5) (8)

Figure 1: Plots of the absolute and relative errors on a log10 scale made by the algorithms that implement formulas (1)–(5)
and (8) to evaluate the mean value coordinate λk related to the vertex vk (magenta dot) for an arbitrary pentagon.

how to defineσi , such that it can be used for any v ∈R2 and arbitrary simple polygons. The disadvantage
of this formula is that its implementation requires O (n 2) instructions, while the formulas (1)–(4) give rise
to O (n) algorithms.

Let us now focus on understanding the circumstances under which the implementations of the formulas
above may exhibit stability problems. One potential problem is the fact that they are rational, which can
lead to the issue of vanishing denominators. This is actually not a problem for the λi , since the sum of
the weights wi in (1)–(4) never vanishes for any v ∈R2 \ ∂ P [8] and likewise for the sum of the weights ŵi

in (5). But what about the weights themselves? Considering some fixed k ∈ {1, . . . , n}, the weight wk in (1)
or (4) is not well-defined, if either αk−1 or αk is equal to ±π, or if v = vk , which happens only if v lies on the
edges [vk−1, vk] or [vk , vk+1]. On the other hand, when computing wk with (2) or (3), we could potentially have
problems even inside the polygon. In fact, the areas Ak−1,k and Ak ,k+1 vanish not only on the edges [vk−1, vk]
or [vk , vk+1], but also on the entire lines supporting them. Based on this initial analysis, it is reasonable to
expect that the computation of mean value coordinates is sensitive to rounding errors near the regions where
they are not well-defined mathematically. Regarding instead the weight ŵk in (5), even though it is well-
defined for any v ∈R2, problems can still arise, for example when subtracting two nearby numbers. This may
happen if Dk−1,k+1 is approximately equal to rk−1rk+1 or if Dj , j+1 is close to−r j r j+1, for some j ̸= k −1, k , that
is, whenever αk−1+αk is close to zero or some α j approaches ±π. In other words, we expect the weights ŵk

to be unstable when v approaches the set Zk = {v ∈R2 : ŵk (v) =λk (v) = 0}, which consists of the edges that
are not adjacent to vk and the line through vk−1 and vk+1, except for the (open) segment (vk−1, vk+1) itself.

To determine if such scenarios can indeed occur in practice, we examine the behaviour of the mean value
coordinates for a specific polygon and visualize the numerical errors introduced by each of the previously
mentioned formulas. For a given index k ∈ {1, . . . , n}, we compute the absolute error

Ea (v) = |fl(λk (v))−λk (v)|, (6)

where λk (v) is the “exact” value computed in multiple-precision (1024 bit) floating-point arithmetic using
the MPFR library [6] and fl(λk (v)) is the result of the standard double precision implementation. Let us
consider the pentagon in Figure 1 and the index k ∈ {1, 2, 3, 4, 5} of the vertex vk marked by the magenta dot.
We examine the values Ea (v) in (6) across a uniform grid of dimension 500×500 containing the polygon. The
results are obtained for λk (v) computed with all the formulas (1)–(5) and with our new formula (8), which
will be introduced in Section 3. If Ea (v) is on the order of the machine epsilon, which is approximately 10−16

in double precision, then it means that the method is stable for v , otherwise it suggests a potential instability.
The plots in Figure 1 show that the original formula in (1) seems to be the only one among the already

known formulas that is stable everywhere. This outcome is particularly surprising, because it suggests that
this method can effectively handle the division by small numbers in the weights wi , i = 1, . . . ,5, contrary
to our initial expectations. Instead, computing λk (v)with (2) or (3), we observe numerical issues around
the lines supporting the edges, but not close to the edges themselves. While this partially aligns with our
prediction of encountering issues along the entire lines, the theoretical analysis on the stability of these
formulas explains why we do not have any problems near the edges. In particular, it turns out that the
numerical errors introduced by (2) and (3) are bounded when v approaches the edges, that is, when some αi

3

is close to ±π (see Corollaries 9 and 10). Then, as expected, the method resulting from (4) has numerical
problems near the boundary of the polygon. Finally, formula (5) appears to be the least stable as it exhibits a
substantial absolute error close to all sets Zi , i = 1, . . . , 5, which also aligns with our initial considerations.

We further extend the stability analysis and also consider the relative error

Er (v) =
|fl(λk (v))−λk (v)|
|λk (v)|

, (7)

which, although not mathematically defined on the set Zk , provides valuable insights into the stability com-
pared to the actual magnitude of |λk |. This metric offers a zoomed-in view of the domain region where |λk |
becomes notably small and indicates how close we can approach Zk before encountering significant relative
errors. In fact, examining the values of Er in Figure 1, we observe that all methods exhibit relatively high
errors in the vicinity of the set Zk , but with different divergence rate. In particular, it appears that (1) may
have potential instability over a wider region near Zk compared to (2) and (3), while (4) and (5) confirm to be
the worst also in relative terms. Additionally, we observe that the relative error aligns with the information
provided by the absolute error in the remaining part of the domain.

To summarize, the original formula (1) is the most robust in terms of numerical stability. In fact, despite
some suggestions of instability close to Zk given by the relative error plot, the formula yields absolutely
stable results across the entire domain. However, there exist situations where even the original formula (1)
can be unstable, and we give an example in Section 5.

3 A new stable formula for mean value coordinates

After observing that all known methods for computing mean value coordinates have some flaw in terms
of numerical stability, the goal of our work is to derive a new formula that is potentially stable everywhere.
Like Floater [3], we aim to ensure that this new method is defined not only in the interior, but also along the
boundary of the polygon. To achieve this, we first employ a similar trick and multiply both the numerator
and denominator of the λi in (1) by a common constant, which is then included into the redefined weights.
In addition, we focus on minimizing operations that are more likely to introduce instability in the results,
such as square roots and summations. We now present the new formula and explain how to implement it in
a stable way.

Theorem 1. The mean value coordinates can be expressed as

λi (v) =
w̃i (v)
∑n

j=1 w̃ j (v)
, w̃i = sin

αi−1+αi

2

∏

j ̸=i

r j

∏

j ̸=i−1,i

cos
α j

2
, i = 1, . . . , n , (8)

and this formula is well-defined for all v ∈ R2, as long as the signed angle αi is defined as π or −π for
v ∈ (vi , vi+1) and in some arbitrary way for v ∈ {vi , vi+1}.

Proof. Starting from (1), using the fact that tan(αi /2) = sin(αi /2)/cos(αi /2), and applying the angle sum
identity for the sine function, we have

wi = sin
αi−1+αi

2

Á�

ri cos
αi−1

2
cos
αi

2

�

.

We can now eliminate the zeros in the denominator by multiplying all wi by F =
∏n

i=1 ri cos(αi /2) and,
denoting the result by w̃i , we obtain the new formula (8).

This formula is well-defined for any v ∈R2 \ ∂ P , because both the sum of the wi and F do not vanish,
and the denominator of λi (v) in (8) is just

∑n
j=1 w̃ j (v) = F
∑n

j=1 w j (v) ̸= 0. Moreover, the formula also works
if v ∈ ∂ P . On the one hand, if v is a vertex of P , that is, v = vk for some k ∈ {1, . . . , n}, then rk = 0 and r j ̸= 0
for j ≠ k , so the only non-vanishing weight is w̃k and consequently λk (v) = 1 and λi (v) = 0 for i ≠ k . On the
other hand, if v lies on an (open) edge of P , say v = (1−µ)vk+µvk+1 for someµ ∈ (0, 1) and some k ∈ {1, . . . , n},
then αk = ±π, so that sin(α/2) = ±1 as well as cos(αk/2) = 0 and cos(α j /2) ̸= 0 for j ≠ k . Therefore, all w̃i

vanish, except for w̃k and w̃k+1, which turn out to be

w̃k = rk+1S , w̃k+1 = rk S , S = sin
αk

2

∏

j ̸=k ,k+1

r j

∏

j ̸=k

cos
α j

2
.

Since rk = µek and rk+1 = (1−µ)ek , where ek = ∥vk+1− vk∥, it follows that λk (v) = 1−µ, λk+1(v) = µ and
λi (v) = 0 for i ̸= k , k +1.

4

Algorithm 1 Stable implementation of formula (8) for computing the mean value coordinates λ1, . . . ,λn

1: function MVC(v, v1, . . . , vn)
2: W := 0
3: for i = 1, . . . , n do ▷ indices are defined cyclically over [1, . . . , n], e.g., vn+1 = v1

4: βi := ANGLE(vi+1− vi , v − vi) ▷ ANGLE((a1, a2), (b1, b2)) returns ATAN2(a1b2−a2b1, a1b1+a2b2)
5: γi := ANGLE(vi − vi+1, v − vi+1)
6: si :=βi +γi

7: ri := ∥vi − v ∥
8: for i = 1, . . . , n do
9: αi−1,i+1 := ANGLE(vi−1− v, vi+1− v)

10: si−1,i+1 :=π · [sign(si−1) + sign(si)]− si−1− si ▷ si−1,i+1 =αi−1+αi

11: if sign(αi−1,i+1) ̸= sign(si−1,i+1) then ▷ in this case, αi−1,i+1 = si−1,i+1−2π · sign(si−1,i+1)
12: αi−1,i+1 :=−αi−1,i+1 ▷ sin((αi−1+αi)/2) = sin(−αi−1,i+1/2)
13: wi := ri−1 · sin(αi−1,i+1/2)
14: for j = 1, . . . , n do
15: if j ̸= i −1, i then
16: wi :=wi · r j · sin(|s j |/2)
17: W :=W +wi

18: for i = 1, . . . , n do
19: λi :=wi /W
20: return λ1, . . . ,λn

Comparing our new formula in (8) to the one in (5), we observe that it also leads to an O (n 2) algorithm for
computing mean value coordinates, but we successfully eliminated all square roots, which can compromise
the precision and the efficiency of the method, and we minimized the use of sum operations, as they can
introduce numerical cancellation errors. In fact, the only sum in (8) is αi−1 +αi ∈ [−2π,2π], but we can
actually avoid computing this sum by noting that it is equal to the angle at v in the triangle [v, vi−1, vi+1],
denoted by αi−1,i+1.

In our implementation (see Algorithm 1), we compute the signed angle θ between two vectors a = (ax , a y)
and b = (bx , by) using the ATAN2 function as θ = ATAN2(ax by − a y bx , ax bx + a y by) ∈ [−π,π]. This is fine
for all angles αi , but a bit more care is needed in the case of αi−1,i+1. Indeed, if |αi−1+αi | > π, then the
ATAN2 function returns αi−1,i+1 =αi−1+αi −2π ·sign(αi−1+αi). However, this “mismatch” by±2π is detected
easily, because the signs of αi−1+αi and αi−1,i+1 differ whenever it happens. And since sin((αi−1+αi)/2) =
sin(−αi−1,i+1/2) in this case, we can resolve this problem by changing the sign of αi−1,i+1 (cf. lines 11 and 12
in Algorithm 1). Note that the same problem can occur if |αi−1+αi |=π, because ATAN2 may return π or −π
in this case, but it can be fixed in the same manner.

Yet, there might still be concerns related to the instability of the cosine function for arguments near zero.
To prevent this, denoting by βi and γi the signed angles at vi and vi+1, respectively, in the triangle [v, vi , vi+1],
we use the fact that

cos
αi

2
= sin

π− |αi |
2

= sin
|βi +γi |

2

(cf. line 16 in Algorithm 1) and recall that the sine function is stable for arguments near π/2. Note that
computing the sum si = βi + γi is not a problem, because both angles are guaranteed to have the same
sign, so that there is no risk of cancellation errors. The price for the improved stability is that we have to
compute the 2n angles βi and γi and their sums si . Note that we still need the angles αi for determining
whether it is necessary to change the sign of αi−1,i+1 or not, but once we know βi and γi we can compute
them as αi =π · sign(si)− si (cf. line 10 in Algorithm 1).

The numerical stability of this algorithm can be observed in Figure 1, which confirms that our new
formula performs best, even if compared to the result using (1), especially close to the region Zk .

So far, we have discussed the numerical stability of the different formulas and supported our claims only
with empirical evidence. In the next section, we conduct a mathematical analysis on the numerical stability
of mean value coordinates and provide a more formal explanation for our observations.

5

4 Theoretical analysis of the numerical stability

A common procedure to theoretically analyse the numerical stability of an algorithm is to establish an upper
bound on the relative forward error and to examine its magnitude. In the specific context of mean value
coordinates, we need to study the error Er in (7). To this end, we recall a result by Fuda et al. [7, Theorem 1],
regarding an upper bound for any function that can be expressed in the form

r (x) =

∑n
i=0 ai (x) fi
∑m

j=0 b j (x)
(9)

for some data values fi and functions ai and b j , i = 0, . . . , n and j = 0, . . . , m . It is worth noting that bound-
ing Er from above also gives an upper bound on the absolute error in (6), because

Ea (v) = Er (v)|λk (v)|.

Theorem 2. Suppose that there exist α0, . . . ,αn ∈Rwith

fl(ai (x)) = ai (x)(1+αi), |αi | ≤ Aε+O (ε2), i = 0, . . . , n

and β0, . . . ,βm ∈Rwith

fl(b j (x)) = b j (x)(1+β j), |β j | ≤ Bε+O (ε2), j = 0, . . . , m

for some constants A and B . Then, assuming that the data fi are given as floating-point numbers, the relative
forward error of r in (9) satisfies

|fl(r (x))− r (x)|
|r (x)|

≤ (n +2+A)α(x)ε+ (m +B)β (x)ε+O (ε2),

where

α(x) =

∑n
i=0 |ai (x) fi |
�

�

∑n
i=0 ai (x) fi

�

�

and β (x) =

∑m
j=0 |b j (x)|
�

�

∑m
j=0 b j (x)
�

�

,

for ε small enough.

We can use this result also for the mean value coordinates

λi (v) =
wi (v)
∑n

j=1 w j (v)
, i = 1, . . . , n , (10)

as their formula fits the expression in (9) for n = 0, a0 =wi , f0 = 1, m = n−1 and b j =wi+1. Before proceeding,
we note that this stability analysis does not account for any errors arising from the initial rounding of the
given values to floating-point numbers.

Corollary 3. Assume that there exist δ1, . . . ,δn ∈Rwith

fl(wi (v)) =wi (v)(1+δi), |δi | ≤Dε+O (ε2), i = 1, . . . , n (11)

for some constant D . Then, assuming that the input values vi and v are given as floating-point numbers, the
relative forward error of the mean value coordinates in (10) satisfies

|fl(λi (v))−λi (v)|
|λi (v)|

≤ (1+D)ε+ (n −1+D)W (v)ε+O (ε2), (12)

where

W (v) =

∑n
i=1 |wi (v)|
�

�

∑n
i=1 wi (v)
�

�

, (13)

for ε small enough.

Hence, the numerical stability of the mean value coordinates depends on the constant D and the function W .
As the latter is the same for all the different formulas, what distinguishes their performance in terms of
numerical stability is the upper bound D on the relative error associated with the weights wi . Considering the
new formula, it can be proven that the constant D related to the weights w̃i is always small (see Appendix B).
In contrast, for all the other formulas, the related D can be large (see Appendix C), which agrees with what
we observed in Section 2.

6

polygon λk absolute error Ea relative error Er

(1) (8) (1) (8)

Figure 2: Plots of the absolute and relative errors on a log10 scale made by the original (1) and the new formula (8) to
evaluate the mean value coordinate λk related to the vertex vk (magenta dot) for the polygon on the left with ε= 0.0001.

5 Numerical experiments

We investigated various examples to compare the different approaches for computing mean value coordinates
based on the formulas in (1)–(5) and (8). Overall, we found that our new formula (8) consistently provides
the most stable results, followed by the original formula (1), which usually performs much better than the
other formulas and is often almost as stable as (8). However, as shown in Section 5.1, there are specific cases
where our new Algorithm 1 beats the implementation of the original formula by a considerable margin. In
Section 5.2, we further provide a comprehensive study of the efficiency of all methods. We implemented all
algorithms with double precision in C++ and computed the “exact” values of λk in multiple-precision (1024
bit) floating-point arithmetic using the MPFR library [6] for determining the relative and the absolute errors.
All tests were run on a Windows 10 laptop with 1.8 GHz Intel Core i7-10510U processor and 16 GB RAM.

5.1 Stability comparison

Let us begin by comparing the performance of the original and the new formula for the 8-vertex polygon
with vertices (1, 1), (−1, 1), (−1,−1), (−ε,−1), (−ε, 0), (ε, 0), (ε,−1), and (1,−1), shown in Figure 2 (left), where ε
indicates the distance between the two vertical edges in the middle. Specifically, we investigate the case
ε= 0.0001 and turn our focus on the coordinate λk associated with the vertex marked by the magenta dot.
In the plots of the absolute error Ea and the relative error Er , which were computed on a uniform 500×500
grid that contains the polygon, we observe that problematic regions with numerical instability exist near
the edges [vk−1, vk] and [vk , vk+1], but that Algorithm 1 handles them better. One reason for the relatively
big errors is the function W in (13), which influences the upper bound on the relative error in (12) for both
formulas and obtains values on the order of 103 in this region. The other reason is the constant D , which is
about two orders of magnitude bigger for the formula in (1) than for our new formula in (8).

We also analysed the performance of the other formulas for this example, and Figure 3 (left) shows that

10-20 10-15 10-10 10-5 100

10-20

10-15

10-10

10-5

100

E
a

(1)
(2)
(3)
(4)
(5)
(8)

δ

10-20 10-15 10-10 10-5 100
10-25

10-20

10-15

10-10

10-5

100

E
a

(1)
(2)
(3)
(4)
(5)
(8)

δ

Figure 3: Comparison of the absolute errors on a log-log scale for computing λk with the formulas (1)–(5) and (8) close
to the points marked by the red cross (left) and the blue cross (right) in Figure 2. The plots show Ea (v) for the different
algorithms for v at a horizontal distance of δ = 10−20,10−19, . . . ,10−1 from the considered points. Some values are not
shown for very small δ, because the algorithms return NAN as a result.

7

polygon absolute error Ea

λk relative error Er

(1) (2) (3) (4) (5) (8)

Figure 4: Same as Figure 1, but for a square spiral polygon.

polygon absolute error Ea

λk relative error Er

(1) (2) (3) (4) (5) (8)

Figure 5: Same as Figure 1, but for a star-shaped polygon.

the implementations of (2) and (3) are as stable as Algorithm 1 close to the edge [vk , vk+1]. However, both
formulas are very unstable close to the extension of this line, where instead the implementations of (1)
and (4) are stable (see Figure 3, right). Interestingly, the worst case for our new formula, in terms of stability,
does not occur extremely close to the edge [vk , vk+1], but at a distance of about 10−2 to 10−3, which is again
due to the behaviour of the function W in (13), and similar for the formulas in (2) and (3). In contrast, the
worst case for the formula in (5) happens at a distance of 10−8 to 10−9, that is, at roughly

p
ε.

Figure 4 compares the errors of the different evaluation procedures for a square spiral polygon. As before,
the plots show the absolute errors Ea and the relative errors Er sampled on a uniform grid of 500× 500
points that contains the polygon. Note that the black pixels in the lower left and the upper right of the
relative error plots indicate points v for which Er (v) is not well-defined, because λk (v) = 0. Otherwise, these
plots confirm the behaviour that we already observed in Figure 1: the new formula (8) achieves the best
result and the original one (1) is second-best, except close to the boundary of the polygon in relative terms.
However, since λk is very small in these regions, it makes more sense to focus on the absolute errors. These
indicate that (1) and (8) produce very similar results, but still the new Algorithm 1 is better near the edges
[vk−1, vk] and [vk , vk+1]. As in Figure 1, we further note that (2) and (3) exhibit numerical instability along the
extensions of the polygon’s edges, especially for those related to [vk−1, vk] and [vk , vk+1], while (4) behaves
similarly to (1), but with bigger errors close to the boundary. Finally, (5) is unstable in the vicinity of all
sets Zi . Figure 5 shows very similar results for a star-shaped polygon.

5.2 Efficiency comparison

To compare the efficiency of the different implementations, we conducted a first experiment using a set of 20
concave polygons, with an increasing number of vertices n , specifically with n = 6i +2 for i = 1, . . . , 20. The
pattern of the polygons is shown in Figure 6 (left) for i = 1, 2, 3. The timings are obtained by evaluating the

8

n = 8 n = 14

n = 20

0 20 40 60 80 100 120 140

n

0

1

2

3

4

5

6

se
c

10-4

(1)
(2)
(3)
(4)
(5)
(8)

Figure 6: Average time in seconds (right) needed by the implementations of the formulas in (1)–(5) and (8) to evaluate
all n mean value coordinates for a concave test polygon (left) with n = 6i +2 vertices for i = 1, . . . , 20.

n = 8 n = 16

n = 32 n = 64

101 102 103 104

n

10-6

10-4

10-2

100

se
c

(1)
(2)
(3)
(4)
(5)
(8)
n

n2

Figure 7: Average time in seconds (right) on a log-log scale for the implementations of the formulas in (1)–(5) and (8) to
evaluate all n mean value coordinates for a test polygon (left) inscribed to an epitrochoid (red curve) with n = 2i vertices
for i = 3, . . . , 13.

coordinates λ1, . . . ,λn at 90000 points and taking the average. The plots in Figure 6 (right) clearly indicate
the linear time complexity of the algorithms derived from the formulas in (1)–(4) and the quadratic time
complexity of the one that implements formula (5) as well as the new Algorithm 1, with the latter being
roughly 25% faster. However, despite the unfavourable time complexity, the stable Algorithm 1 is at most
twice as expensive as the linear-time algorithms for n ≤ 30 and only about four times slower for n = 100.

In a second experiment, we focus on comparing the efficiency of the different methods for significantly
larger values of n . Specifically, we construct the test polygons in Figure 7 (left) by sampling an epitrochoid
curve at n = 2i points, i = 3, . . . ,13, and then measure and plot (right) the average running time of all algo-
rithms for computing all n mean value coordinates at 100 evaluation points. In this setting, we gain a more
comprehensive understanding of the asymptotic computational cost associated with the implementation of
the various formulas, further confirming our previous observations. In fact, formulas (1)–(4) demonstrate a
computational complexity of O (n), while (5) and Algorithm 1 exhibit an asymptotic running time on the
order of O (n 2). To conclude, although (5) and Algorithm 1 have similar behaviour, our new implementation
consistently proves to be faster in practice, especially for polygons with less than a thousand vertices.

9

6 Conclusion

Our investigations regarding the stable and efficient evaluation of mean value coordinates reveal the follow-
ing, partially surprising insights. First, among the four formulas in (1)–(4), which give rise to efficient O (n)
algorithms, the original expression in (1) generally performs best in terms of stability and is as fast as the
others. This is contrary to the common belief that using the ATAN2 function (for computing the angles αi)
and the TAN function (for evaluating tan(αi /2)) is slow. At least on our platform, we did not notice any
computational disadvantage.

Second, the implementation of the original formula works well, even if v is on one of the edges of the
polygon, say v = (1− µ)vk + µvk+1 for some k and µ ∈ (0,1), despite the fact that αk = ±π in this case,
hence tan(αk/2) is mathematically not well-defined. Since common floating-point implementations cannot
represent ±π/2 exactly, the TAN function does not return NAN in this case, but rather a number that is
extremely big in absolute value, and the mean value coordinates λi happen to be correct, up to machine
precision, in the end. However, we observed major numerical problems for polygons with edges that are
very close to each other (see Figure 2). In the vicinity of such edges, two of the values tan(αi /2) are very big,
which eventually leads to a loss of precision.

Third, our new Algorithm 1 handles even such extreme cases and is generally the most stable of all
methods. It also works if v is a vertex of the polygon, a case that needs to be detected in the linear-time
algorithms by checking if some ri equals zero. The only other method that does not require any exceptions
for handling points on the boundary of the polygon is the one based on (5), but it turns out to be slower and
less stable than our approach, especially near the sets Zi .

Acknowledgements

This work was supported by the Swiss National Science Foundation (SNSF) under project number 188577.

References

[1] D. Anisimov. Analysis and new constructions of generalized barycentric coordinates in 2D. PhD thesis, Faculty of
Informatics, Università della Svizzera italiana, May 2017.

[2] M. S. Floater. Mean value coordinates. Computer Aided Geometric Design, 20(1):19–27, Mar. 2003.

[3] M. S. Floater. Wachspress and mean value coordinates. In G. E. Fasshauer and L. L. Schumaker, editors, Approxi-
mation Theory XIV: San Antonio 2013, pages 81–102. Springer, Cham, 2014.

[4] M. S. Floater, K. Hormann, and G. Kós. A general construction of barycentric coordinates over convex polygons.
Advances in Computational Mathematics, 24(1–4):311–331, Jan. 2006. [PDF]

[5] M. S. Floater, G. Kós, and M. Reimers. Mean value coordinates in 3D. Computer Aided Geometric Design, 22(7):623–
631, Oct. 2005.

[6] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. MPFR: A multiple-precision binary floating-point
library with correct rounding. ACM Transactions on Mathematical Software, 33(2):Article 13, 15 pages, June 2007.

[7] C. Fuda, R. Campagna, and K. Hormann. On the numerical stability of linear barycentric rational interpolation.
Numerische Mathematik, 152(4):761–786, Dec. 2022. [PDF]

[8] K. Hormann and M. S. Floater. Mean value coordinates for arbitrary planar polygons. ACM Transactions on Graphics,
25(4):1424–1441, Oct. 2006. [PDF]

[9] K. Hormann and N. Sukumar, editors. Generalized Barycentric Coordinates in Computer Graphics and Computa-
tional Mechanics. Taylor & Francis, CRC Press, Boca Raton, 2017. ISBN 978-1-4987-6359-2.

[10] IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic, July 2019. IEEE Std 754-2019 (Revision of
IEEE Std 754-2008).

[11] T. Ju, S. Schaefer, and J. Warren. Mean value coordinates for closed triangular meshes. ACM Transactions on
Graphics, 24(3):561–566, July 2005.

[12] S. Loosemore, R. M. Stallman, R. McGrath, A. Oram, and U. Drepper. Known maximum errors in math functions. In
The GNU C Library Reference Manual, chapter 19.7, pages 561–601. 2023.

[13] NVIDIA. Mathematical functions. In CUDA C++ Programming Guide, Release 12.4, chapter 16, pages 373–383. Mar.
2024.

[14] S. M. Rump. Error bounds for computer arithmetics. In 26th IEEE Symposium on Computer Arithmetic, ARITH-26,
pages 1–14, Kyoto, June 2019.

[15] L. N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, Philadelphia, 1997. ISBN 978-0-89871-361-9.

10

https://n2t.net/ark:/12658/srd1318813
https://doi.org/10.1016/S0167-8396(03)00002-5
https://doi.org/10.1007/978-3-319-06404-8_6
https://doi.org/10.1007/s10444-004-7611-6
https://www.inf.usi.ch/hormann/papers/Floater.2006.AGC.pdf
https://doi.org/10.1016/j.cagd.2005.06.004
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1007/s00211-022-01316-w
https://www.inf.usi.ch/hormann/papers/Fuda.2022.OTN.pdf
https://doi.org/10.1145/1183287.1183295
https://www.inf.usi.ch/hormann/papers/Hormann.2006.MVC.pdf
https://doi.org/10.1201/9781315153452
https://doi.org/10.1201/9781315153452
https://www.worldcat.org/search?q=isbn%3A9781498763592
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1145/1073204.1073229
https://www.gnu.org/s/libc/manual/pdf/libc.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://doi.org/10.1109/ARITH.2019.00011
https://www.worldcat.org/search?q=isbn%3A9780898713619

Appendix

This appendix provides the mathematical proof that computing mean value coordinates with the new
formula (8) is always stable, as long as the function W in (13) does not affect the upper bound in (12). In
other words, we demonstrate that the constant D in (11) related to the weights w̃i is always small (Appendix B).
In addition, we show that the constants D related to the weights wi in (1)–(4) and ŵi in (5) cannot be bounded
(Appendix C). Before going into these details, we present some preliminary facts that we later use in our
analysis.

A Preliminaries

We consider a computer that uses a setF of floating-point numbers with the corresponding machine epsilon ε
and let fl: R→F be the rounding function that maps each x ∈R to the closest floating-point approximation
fl(x) ∈F. We recall [15, Lecture 13] that for any x ∈R, x ̸= 0, the relative error is bounded from above by the
machine epsilon ε, or, equivalently, we can always find some δ ∈Rwith |δ|<ε, such that

fl(x) = x (1+δ).

The same holds for any arithmetic operation ∗ ∈ {+,−,×,÷} between two arbitrary floating-point numbers
x , y ∈F, that is, there exists some δ ∈Rwith |δ|<ε, such that

fl(x ∗ y) = (x ∗ y)(1+δ).

This property can also be extended to cases involving multiple operations, such as sums or products, where
the upper bound on |δ| depends on the number of operations performed; for more detailed information, we
refer the interested reader to Fuda et al. [7, Section 2].

Regarding instead the elementary function implementations in standard libraries, such as the trigonomet-
ric functions, we do not have general results on their numerical stability, but some libraries give information
about the maximum relative errors in their specific implementations, such as the CUDA programming
model [13] and the GNU library [12]. In our analysis, we investigate the numerical stability of the values w̃i by
assuming that we have stable algorithms to evaluate the square root, the sine, and the arctangent functions.
In other words, we assume that, for any x ∈F, there exist some δsqrt,δsin,δarctan,δtan ∈R, such that

fl(
p

x) =
p

x (1+δsqrt), |δsqrt| ≤Dsqrtε+O (ε2), (14)

fl(sin x) = sin x (1+δsin), |δsin| ≤Dsinε+O (ε2), (15)

fl(arctan x) = arctan x (1+δarctan), |δarctan| ≤Darctanε+O (ε2) (16)

fl(tan x) = tan x (1+δtan), |δtan| ≤Dtanε+O (ε2) (17)

for some constants Dsqrt, Dsin,Darctan, and Dtan. For example, for the IEEE standard 754 floating-point arith-
metic [10], it is known [14] that |δsqrt| ≤ 1−1/

p
1+2ε, hence, by Taylor expansion, Dsqrt = 1.

While the bounds in (14)–(16) assume that the argument x is a floating-point number, let us now derive
the bounds for an arbitrary argument y ∈R, which is first rounded to a floating-point value z = fl(y).

Lemma 4. Let z = y (1+γ) ∈F, where y ∈Randγ ∈R satisfies |γ| ≤C ε, for some C > 0, and f be a differentiable
function at y . If f (y) ̸= 0, then there exists some γ′ ∈R such that1

f (z) = f (y)(1+γ′), |γ′| ≤
| f ′(y)y |
| f (y)|

C ε+O (ε2).

Proof. The statement follows immediately from the Taylor expansion of f around y , that is,

f (z) = f (y) + f ′(y)y γ+O (ε2) = f (y)
�

1+
f ′(y)y

f (y)
γ+O (ε2)
�

.

1Note that the quantity | f ′(y)y |/| f (y)| is the relative condition number κ f [15] of the function f .

11

Corollary 5. Let z = y (1+γ) ∈ F, where y ∈R and γ ∈R satisfies |γ| ≤ C ε, for some C > 0. If sin y ̸= 0 and
arctan y ̸= 0, then there exist some δ′sin,δ′arctan ∈R, such that

fl(sin z) = sin y (1+δ′sin), |δ′sin| ≤ (|cot y ||y |C +Dsin)ε+O (ε2), (18)

fl(arctan z) = arctan y (1+δ′arctan), |δ′arctan| ≤ (C +Darctan)ε+O (ε2). (19)

If y /∈ {(2k +1)π/2, k ∈Z} and tan y ̸= 0, then there exists some δ′tan ∈R, such that

fl(tan z) = tan y (1+δ′tan), |δ′tan| ≤ (2|y |/|sin 2y |C +Dtan)ε+O (ε2). (20)

If y > 0, then there exists some δ′sqrt ∈R, such that

fl(
p

z) =
p

y (1+δ′sqrt), |δ′sqrt| ≤ (C /2+Dsqrt)ε+O (ε2). (21)

Proof. Equations (18), (20) and (21) follow directly from (15), (17) and (14), respectively, and Lemma 4.
Regarding (19), Lemma 4 and (16) give

fl(arctan z) = arctan y (1+δ′arctan), |δ′arctan| ≤
�
�

�

�

y

(1+ y 2)arctan y

�

�

�C +Darctan

�

ε+O (ε2).

We note that g (y) = y /[(1+ y 2)arctan y] is always positive, because y and arctan y have the same sign. So,
to complete the proof, it remains to show that g (y)≤ 1 for all y > 0. The first derivative of g is given by

g ′(y) =
arctan y − y 2 arctan y − y

[(1+ y 2)arctan y]2
.

Since h (y) = arctan y − y is a decreasing function, we have h (y) < h (0) = 0 and therefore g ′(y) < 0. This
means that g is a strictly decreasing function. Additionally, we know that limx→0 arctan x/x = 1 and conclude

g (y)< lim
x→0

g (x) = lim
x→0

x

(1+ x 2)arctan x
= 1.

Finally, we consider two arbitrary vectors a = (ax , a y) and b = (bx , by) and present the upper bounds on the
relative forward errors of some quantities that we frequently use.

1. Considering the radius ri = ∥v − vi ∥ for some i ∈ {1, . . . , n}, it follows from Theorem 2 and (21) that
there exists some ρi ∈R, such that fl(ri) = ri (1+ρi)with

|ρi | ≤ (2+Dsqrt)ε+O (ε2), i = 1, . . . , n . (22)

2. Considering the dot product Da ,b = ax bx + a y by between a and b , it follows from Theorem 2 that
there exists some δa ,b ∈R, such that fl(Da ,b) =Da ,b (1+δa ,b)with

|δa ,b | ≤ u (Da ,b)ε+O (ε2), u (Da ,b) = 4
|ax bx |+ |a y by |
|Da ,b |

. (23)

It is important to note that the relative forward error becomes unreliable when the computed quantity
approaches zero, as dividing by a small value can result in a significantly large error. In such cases,
the right quantity to consider is the absolute forward error, which is given by |Da ,bδa ,b | and, since
|ax bx |+ |a y by | ≤ 2∥a∥∥b ∥, it is bounded from above by 8∥a∥∥b ∥ε+O (ε2). Hence, it is reasonable to
expect that the computation of Da ,b is generally stable, although its upper bound on the forward error
may increase when the values ∥a∥ and ∥b ∥ become large.

3. Considering the 2D cross product Ca ,b = (ax by −ax by) between a and b , which is twice the signed
area of the triangle [0, a , b], it follows from Theorem 2 that there exists some γa ,b ∈ R, such that
fl(Ca ,b) =Ca ,b (1+γa ,b)with

|γa ,b | ≤ u (Ca ,b)ε+O (ε2), u (Ca ,b) = 4
|ax by |+ |a y bx |
|Ca ,b |

. (24)

As in the case of the dot product, it may happen that this upper bound is big when the values ∥a∥ and
∥b ∥ are large, but in general we assume that the computation of Ca ,b is stable.

4. Considering the signed angle θa ,b = arctan(Da ,b /Ca ,b) between a and b , it follows from Theorem 2, the
previous observations, and (19) that there exists someσa ,b ∈R, such that fl(θa ,b) = θa ,b (1+σa ,b)with

|σa ,b | ≤ u (θa ,b)ε+O (ε2), u (θa ,b) = u (Da ,b) +u (Ca ,b) +1+Darctan. (25)

12

B Error analysis of the formula in (8)

We now observe that the weights w̃i (v) can be written in the general form

w (v) =
J
∏

j=1

K
∑

k=1

x j ,k (v), (26)

for some J , K ∈N. Thus, we first derive a general bound on the relative forward error for the function w
in (26) and then apply this result in the specific case of the weights w̃i in (8). It is worth noting that, since the
expressions of the weights wi in (1)–(4) and ŵi in (5) are all of the type (26), the result presented below can
be applied to these methods as well (see Appendix C).

Theorem 6. Suppose that there exist χ j ,k ∈R, j = 1, . . . , J and k = 1, . . . , K , with

fl(x j ,k (v)) = x j ,k (v)(1+χ j ,k), |χ j ,k | ≤ X j ,kε+O (ε2),

for some positive constants X j ,k , j = 1, . . . , J and k = 1, . . . , K . Then there exists some δ ∈R, such that w in (26)
satisfies fl(w (v)) =w (v)(1+δ) and |δ| ≤Dε+O (ε2), where

D =
J
∑

j=1

∑K
k=1 |x j ,k (v)|(K −1+X j ,k)
�

�

∑K
k=1 x j ,k (v)
�

�

+ J −1.

Proof. We first notice that fl(w (v)) is given by

fl(w (v)) =
J
∏

j=1

K
∑

k=1

�

x j ,k (v)(1+χ j ,k)(1+δ
+
j ,k)
�

(1+δ×),

where δ+j ,k and δ× are the relative errors introduced by the K −1 sums and the J −1 products, respectively,
so they satisfy

|δ+j ,k | ≤ (K −1)ε+O (ε2) and |δ×| ≤ (J −1)ε+O (ε2). (27)

Consequently, there exist some η j ,k ∈Rwith

|η j ,k | ≤ (K −1+X j ,k)ε+O (ε2), j = 1, . . . , J , k = 1, . . . , K , (28)

such that

fl(w (v)) =
J
∏

j=1

K
∑

k=1

�

x j ,k (v)(1+η j ,k)
�

(1+δ×) =
J
∏

j=1

�

K
∑

k=1

x j ,k (v)

�

1+

∑K
k=1 x j ,k (v)η j ,k
∑K

k=1 x j ,k (v)

�

�

(1+δ×)

=w (v)

�

1+
J
∑

j=1

∑K
k=1 x j ,k (v)η j ,k
∑K

k=1 x j ,k (v)
+δ×+O (ε2)

�

.

Therefore, δ=
∑J

j=1

∑K
k=1 x j ,k (v)η j ,k

À

∑K
k=1 x j ,k (v)+δ×+O (ε2), and the statement follows immediately by

using the triangle inequality, (27), and (28).

Corollary 7. For any v ∈ F2 and v1, . . . , vn ∈ F2, there exist δ1, . . . ,δn ∈ R, such that the w̃i in (8) satisfy
fl(w̃i (v)) = w̃i (v)(1+δi) and |δi | ≤Dε+O (ε2) for i = 1, . . . , n, where

D = max
i=1,...,n

π

2

�

u (αi−1,i+1) +
∑

j ̸=i−1,i

�

max
�

u (β j), u (γ j)
	

+1
�

�

+ (n −1)(2+Dsqrt+Dsin) +2n −3.

Proof. We note that the w̃i in (8) can be written as in (26) for J = 2n −2, K = 1 and

x j ,1 =

sin
αi−1,i+1

2 , j = 1

r j−1, j = 2, . . . , i ,

r j , j = i +1, . . . , n ,

sin
β j−n+γ j−n

2 , j = n +1, . . . , n + i −2,

sin
β j−n+2+γ j−n+2

2 , j = n + i −1, . . . , 2n −2.

13

It then follows from (18), (22), and (25) that fl(x j ,1) = x j ,1(1+χ j ,1)with |χ j ,1| ≤ X j ,1ε+O (ε2) and

X j ,1 =

�

�cot
αi−1,i+1

2

�

�

�

�

αi−1,i+1

2

�

�u (αi−1,i+1) +Dsin, j = 1,

2+Dsqrt, j = 2, . . . , n ,
�

�cot
β j−n+γ j−n

2

�

�

�

�

β j−n+γ j−n

2

�

�

�

max
�

u (β j−n), u (γ j−n)
	

+1
�

+Dsin, j = n +1, . . . , n + i −2
�

�cot
β j−n+2+γ j−n+2

2

�

�

�

�

β j−n+2+γ j−n+2

2

�

�

�

max
�

u (β j−n+2), u (γ j−n+2)
	

+1
�

+Dsin, j = n + i −1, . . . , 2n −2.

Therefore, we can use Theorem 6 to get fl(w̃i (v)) = w̃i (v)(1+δi)with |δi | ≤Diε+O (ε2) and

Di = X1,1+ (n −1)(2+Dsqrt) +
2n−2
∑

j=n+1

X j ,1+2n −3.

Since |x |/|sin x | ≤π/2 for any x ∈ [−π/2,π/2] and αi−1,i+1,β j +γ j ∈ [−π/2,π/2], we get

Di ≤
π

2

�

u (αi−1,i+1) +
∑

j ̸=i−1,i

�

max
�

u (β j), u (γ j)
	

+1
�

�

+ (n −1)Dsin+ (n −1)(2+Dsqrt) +2n −3,

which proves the statement.

C Error analysis of the formulas in (1)–(5)

As mentioned before, also the weights wi in (1)–(4) and ŵi in (5) are of type (26), so that we can apply
Theorem 6 in the specific case of these formulas.

Corollary 8. For any v ∈ F2 and v1, . . . , vn ∈ F2, there exist δ1, . . . ,δn ∈ R, such that the wi in (1) satisfy
fl(wi (v)) =wi (v)(1+δi) and |δi | ≤Dε+O (ε2) for i = 1, . . . , n, where

D = max
i=1,...,n

Fi (1+πu (αi) +Dtan) +5+Dsqrt (29)

and

Fi =max
v∈F2

�

�

�

�

sin
αi−1+αi

2
cos
αi−1

2
cos
αi

2

�

�

�

�

−1

.

Proof. We note that wi in (1) can be written as in (26) for J = K = 2 and

x1,1 = tan
αi−1

2
, x1,2 = tan

αi

2
,

x2,1 =
1

ri
, x2,2 = 0.

It then follows from (22), (25), and (20) that fl(x j ,k) = x j ,k (1+χ j ,k)with |χ j ,k | ≤ X j ,kε+O (ε2) and

X1,1 =
|αi−1|
|sinαi−1|

u (αi−1) +Dtan, X1,2 =
|αi |
|sinαi |

u (αi) +Dtan,

X2,1 = 3+Dsqrt, X2,2 = 0.

Therefore, we can use Theorem 6 to obtain fl(wi (v)) =wi (v)(1+δi)with |δi | ≤Diε+O (ε2) and

Di =
|x1,1|(1+X1,1) + |x1,2|(1+X1,2)

|x1,1+ x1,2|
+X2,1+2

=

∑

j=i−1,i

|tan(α j /2)|
�

1+
|α j |
|sinα j |

u (α j) +Dtan

�

|tan(αi−1/2) + tan(αi /2)|
+5+Dsqrt

≤

∑

j=i−1,i

|tan(α j /2)|
|sinα j |

(1+ |α j |u (α j) +Dtan)

|tan(αi−1/2) + tan(αi /2)|
+5+Dsqrt

≤

∑

j=i−1,i

|tan(α j /2)|
|sinα j |

|tan(αi−1/2) + tan(αi /2)|
�

1+πmax
�

u (αi−1), u (αi)
	

+Dtan

�

+5+Dsqrt.

14

Finally, we use the double-angle formula for the sine function and get

∑

j=i−1,i

|tan(α j /2)|
|sinα j |

|tan(αi−1/2) + tan(αi /2)|
=

1

2

cos2(αi−1/2) + cos2(αi /2)
|sin(αi−1+αi)/2 cos(αi−1/2)cos(αi /2)|

≤ Fi ,

which gives Di ≤D for D in (29).

For the following statements, let dk = vk − v , k = 1, . . . , n and let Ci , j denote the cross product of di and d j ,
which we denoted by Cdi ,d j

in Appendix A.

Corollary 9. For any v ∈ F2 and v1, . . . , vn ∈ F2, there exist δ1, . . . ,δn ∈ R, such that the wi in (2) satisfy
fl(wi (v)) =wi (v)(1+δi) and |δi | ≤Dε+O (ε2) for i = 1, . . . , n, where

D = max
i=1,...,n

3

4
Fi

�

5+Dsqrt+max
�

u (Ci ,i+1), u (Ci−1,i+1), u (Ci−1,i)
	

�

+u (Ci ,i+1) +u (Ci−1,i) +8 (30)

and

Fi =max
v∈F2

�

�

�

�

sin
αi−1+αi

2
sin
αi−1

2
sin
αi

2

�

�

�

�

−1

.

Proof. We note that the wi in (2) can be written as in (26) for J = 3, K = 3 and

x1,1 = ri−1Ai ,i+1, x1,2 =−ri Ai−1,i+1, x1,3 = ri+1Ai−1,i ,

x2,1 =
1

Ai−1,i
, x2,2 = 0, x2,3 = 0,

x3,1 =
1

Ai ,i+1
, x3,2 = 0, x3,3 = 0.

It then follows from (22) and (24) that fl(x j ,k) = x j ,k (1+χ j ,k)with |χ j ,k | ≤ X j ,kε+O (ε2) and

X1,1 = 3+Dsqrt+u (Ci ,i+1), X1,2 = 3+Dsqrt+u (Ci−1,i+1), X1,3 = 3+Dsqrt+u (Ci−1,i),

X2,1 = 1+u (Ci−1,i), X2,2 = 0, X2,3 = 0,

X3,1 = 1+u (Ci ,i+1), X3,2 = 0, X3,3 = 0.

Therefore, we can use Theorem 6 to obtain fl(wi (v)) =wi (v)(1+δi)with |δi | ≤Diε+O (ε2) and

Di =
|x1,1|(2+X1,1) + |x1,2|(2+X1,2) + |x1,3|(2+X1,3)

|x1,1+ x1,2+ x1,3|
+X2,1+X3,1+6

≤
∑

k=1,3 |x1,k |
�

�

∑

k=1,3 x1,k

�

�

�

5+Dsqrt+max
�

u (Ci ,i+1), u (Ci−1,i+1), u (Ci−1,i)
	

�

+u (Ci ,i+1) +u (Ci−1,i) +8.

Finally, we use some trigonometric identities to obtain
∑

k=1,3 |x1,k |
�

�

∑

k=1,3 x1,k

�

�

=
|sinαi−1|+ |sin(αi−1+αi)|+ |sinαi |
|sinαi−1− sin(αi−1+αi) + sinαi |

≤
3

|sinαi−1− sin(αi−1+αi) + sinαi |

=
3

4|sin((αi +αi−1)/2)sin(αi−1/2)sin(αi /2)|
=

3

4
Fi ,

which gives Di ≤D for D in (30).

Corollary 10. For any v ∈ F2 and v1, . . . , vn ∈ F2, there exist δ1, . . . ,δn ∈ R, such that the wi in (3) and (4)
satisfy fl(wi (v)) =wi (v)(1+δi) and |δi | ≤Dε+O (ε2) for i = 1, . . . , n, where

D = max
i=1,...,n

�

Fi max
j=i−1,i

�

1+max
�

7+2Dsqrt, 2+u (Dj , j+1)
	

+u (C j , j+1)
�

�

+5+Dsqrt (31)

15

with

Fi =max
v∈F2

�

�

�sin
αi−1+αi

2
sin
αi−1

2
sin
αi

2

�

�

�

−1

, for wi in (3),

2
�

�

�sin
αi−1+αi

2
cos
αi−1

2
cos
αi

2
(1+ cosαi−1)(1+ cosαi)

�

�

�

−1

, for wi in (4).

Proof. The proof is carried out for the computation of wi (v)with formula (3), but similar arguments can be
applied to the case of the weights wi (v) in (4).

We note that wi in (3) can be written as in (26) for J = K = 2 and

x1,1 =
ri−1ri −Di−1,i

2Ai−1,i
, x1,2 =

ri ri+1−Di ,i+1

2Ai ,i+1
,

x2,1 =
1

ri
, x2,2 = 0.

It then follows from Theorem 2 and (22)–(24) that fl(x j ,k) = x j ,k (1+χ j ,k)with |χ j ,k | ≤ X j ,kε+O (ε2) and

X1,1 =
ri−1ri (7+2Dsqrt) + |Di−1,i |(2+u (Di−1,i))

|ri−1ri −Di−1,i |
+u (Ci−1,i),

X1,2 =
ri ri+1(7+2Dsqrt) + |Di ,i+1|(2+u (Di ,i+1))

|ri ri+1−Di ,i+1|
+u (Ci ,i+1),

X2,1 = 3+Dsqrt,

X2,2 = 0.

Therefore, we can use Theorem 6 to obtain fl(wi (v)) =wi (v)(1+δi)with |δi | ≤Diε+O (ε2) and

Di =
|x1,1|(1+X1,1) + |x1,2|(1+X1,2)

|x1,1+ x1,2|
+X2,1+2

=

∑

j=i−1,i

�

�

�

�

r j r j+1−Dj , j+1

2A j , j+1

�

�

�

�

�

1+
|r j r j+1|(7+2Dsqrt) + |Dj , j+1|(2+u (Dj , j+1))

|r j r j+1−Dj , j+1|
+u (C j , j+1)

�

|(ri−1ri −Di−1,i)/(2Ai−1,i) + (ri ri+1−Di ,i+1)/(2Ai ,i+1)|
+5+Dsqrt

≤

∑

j=i−1,i

r j r j+1+ |Dj , j+1|
2|A j , j+1|

�

1+max
�

7+2Dsqrt, 2+u (Dj , j+1)
	

+u (C j , j+1)
�

|(ri−1ri −Di−1,i)/(2Ai−1,i) + (ri ri+1−Di ,i+1)/(2Ai ,i+1)|
+5+Dsqrt

=

∑

j=i−1,i

1+ |cosα j |
|sinα j |

�

1+max
�

7+2Dsqrt, 2+u (Dj , j+1)
	

+u (C j , j+1)
�

|(1− cosαi−1)/sinαi−1+ (1− cosαi)/sinαi |
+5+Dsqrt.

Finally, we use some trigonometric identities and observe that

∑

j=i−1,i

1+ |cosα j |
|sinα j |

|(1− cosαi−1)/sinαi−1+ (1− cosαi)/sinαi |
≤

4

|sinαi−1+ sinαi − sin(αi−1+αi)|

=
1

|sin((αi +αi−1)/2)sin(αi−1/2)sin(αi /2)|
= Fi ,

which gives Di ≤D for D in (31).

Corollary 11. For any v ∈ F2 and v1, . . . , vn ∈ F2, there exist δ1, . . . ,δn ∈ R, such that the ŵi in (5) satisfy
fl(ŵi (v)) = ŵi (v)(1+δi) and |δi | ≤Dε+O (ε2) for i = 1, . . . , n, where

D = max
i=1,...,n

�

Fi max
¦

7+2Dsqrt, 2+u (Di−1,i+1), 2+ max
j ̸=i−1,i

u (Dj , j+1)
©

�

+ (n −1)Dsqrt+n −2 (32)

16

and

Fi =max
v∈F2

�

|1− cos(αi−1+αi)|−1+
∑

j ̸=i−1,i

|1+ cosα j |−1
�

.

Proof. We note that the ŵi in (5), neglecting the signs δi , can be written as in (26) for J = n −1, K = 1 and

x j ,1 =

p

ri−1ri+1−Di−1,i+1, j = 1
Æ

r j−1r j +Dj−1, j , j = 2, . . . , i −1,
Æ

r j r j+1+Dj , j+1, j = i +1, . . . , n .

It then follows from Theorem 2 and (21)–(23) that fl(x j ,1) = x j ,1(1+χ j ,1)with |χ j ,1| ≤ X j ,1ε+O (ε2) and

X j ,1 =

ri−1ri+1(7+2Dsqrt) + |Di−1,i+1|(2+u (Di−1,i+1))

2|ri−1ri+1−Di−1,i+1|
+Dsqrt, j = 1,

r j−1r j (7+2Dsqrt) + |Dj−1, j |(2+u (Dj−1, j))

2|r j−1r j +Dj−1, j |
+Dsqrt, j = 2, . . . , i −1,

r j r j+1(7+2Dsqrt) + |Dj , j+1|(2+u (Dj , j+1))

2|r j r j+1+Dj , j+1|
+Dsqrt, j = i +1, . . . , n .

Therefore, we can use Theorem 6 to get fl(ŵi (v)) = ŵi (v)(1+δi)with |δi | ≤Diε+O (ε2) and

Di =
n
∑

j=1

X j ,1+n −2

≤
ri−1ri+1+ |Di−1,i+1|

2|ri−1ri+1−Di−1,i+1|
max
�

7+2Dsqrt, 2+u (Di−1,i+1)
	

+
∑

j ̸=i−1,i

r j r j+1+ |Dj , j+1|
2|r j r j+1+Dj , j+1|

max
�

7+2Dsqrt, 2+u (Dj , j+1)
	

+ (n −1)Dsqrt+n −2

=
1+ |cos(αi−1+αi)|

2|1− cos(αi−1+αi)|
max
�

7+2Dsqrt, 2+u (Di−1,i+1)
	

+
∑

j ̸=i−1,i

1+ |cosα j |
2|1+ cosα j |

max
�

7+2Dsqrt, 2+u (Dj , j+1)
	

+ (n −1)Dsqrt+n −2

≤
max
�

7+2Dsqrt, 2+u (Di−1,i+1)
	

|1− cos(αi−1+αi)|
+
∑

j ̸=i−1,i

max
�

7+2Dsqrt, 2+u (Dj , j+1)
	

|1+ cosα j |
+ (n −1)Dsqrt+n −2,

which proves the statement.

The important difference between the constants D in the upper bounds on the relative errors of the weights
in Corollaries 8–11, compared to D in Corollary 7, is that the former all depend on Fi . In all cases, Fi is
the maximum, over the finite set F2, of some function that diverges to infinity, either at the edges of P ,
along the lines that support them, or at the sets Zi , which explains the big relative errors of the mean value
coordinates λi close to those regions. Surprisingly, for the original formula in (1), the potentially big relative
errors of the weights usually cancel out “magically” during the normalization and do not affect the relative
errors of the λi , except in the cases discussed in Section 5.

17

	Introduction
	Existing methods for computing the mean value coordinates
	A new stable formula for mean value coordinates
	Theoretical analysis of the numerical stability
	Numerical experiments
	Stability comparison
	Efficiency comparison

	Conclusion
	Preliminaries
	Error analysis of the formula in (8)
	Error analysis of the formulas in (1)–(5)

