
The Trailer of the ACM 2030 Roadmap for Software Engineering

Mauro Pezzè
USI Università della Svizzera Italiana, Lugano

Constructor Institute of Technology, Schaffhausen
Università degli studi di Milano Bicocca, Milano

mauro.pezze@usi.ch

Matteo Ciniselli
USI Università della Svizzera Italiana

Lugano, Switzerland
matteo.ciniselli@usi.ch

Luca Di Grazia
USI Università della Svizzera Italiana

Lugano, Switzerland
luca.di.grazia@usi.ch

Niccolò Puccinelli
USI Università della Svizzera Italiana

Lugano, Switzerland
niccolo.puccinelli@usi.ch

Ketai Qiu
USI Università della Svizzera Italiana

Lugano, Switzerland
ketai.qiu@usi.ch

ABSTRACT
The landscape of software engineering has dramatically changed.
The recent advances in AI, the new opportunities of quantum
computing, and the new challenges of sustainability and cyber
security upset the software engineering research prospective. The
2030 SE-Roadmap special issue of ACM TOSEM Transactions on
Software Engineering and Methodology gives a 360◦ view of the
research challenges of the 30ties with a thorough editorial, four
roadmap papers from the ACM TOSEM editorial board, and over
30 peer-reviewed papers from the research community.

This paper previews the main content of the 2030 roadmap spe-
cial issue with a report from the 2030 Software Engineering
Roadmap workshop, co-located with ACM SIGSOFT FSE Foun-
dations of Software engineering on July 15th and 16th, 2024 in
Porto de Galinhas, Brazil, that spotlighted the software engineer-
ing research horizon to feed ideas into the ACM TOSEM special
issue. The paper discusses the new challenges to software engi-
neering that emerged in the SE2030 workshop: AI for software
engineering, software engineering by and for humans, sustainable
software engineering, automatic programming, cyber security, val-
idation and verification, and quantum software engineering.

1. INTRODUCTION
The landscape of software engineering has dramatically changed,
and we need a new roadmap for the research in software engineer-
ing. In this paper we overview the results of the 2030 Software
Engineering Roadmap workshop that was co-located with ACM
SIGSOFT FSE Foundations of Software engineering on July 15th
and 16th, 2024 in Porto de Galinhas, Brazil. The liberating struc-
ture1 format of the intensive two-full-days discussion among the
over sixty participants offers an unbiased viewpoint of the main
challenges to software engineering in this decade. We invited the
authors of 59 of the 76 papers submitted to the workshop2 to dis-
cuss the recent changes in software engineering, share a vision of
the future evolution of the discipline, and shape a roadmap for the
research community. We invited the authors of selected papers to
extend their paper for the SE2030 roadmap ACM TOSEM special

1An excellent introduction to the liberating structure is available
at https://www.liberatingstructures.com
2The list of workshop papers as well as the url of many of
the papers is available at the workshop website https://conf.
researchr.org/home/2030-se

issue, by taking into account the comments of the early reviews,
and the outcome of the worksop that we summarize in this pa-
per. The discussion identified seven key areas that challenge the
research in software engineering:

Artificial Intelligence for Software Engineering (AI4SE) The recent
breakthrough in machine learning, generative AI and au-
tonomous systems triggers the deepest change in the skyline
of software engineering research and practice since the In-
ternet revolution in the second half of the last century [23].
The software engineering community has never seen a so
fast and predominant growth of new research threads such
as the study of machine learning in software engineering and
the challenges of engineering machine-learning-driven sys-
tems, both of which have become the dominant themes of
the main software engineering conferences and journals [11].
The discussion in the workshop highlighted the challenges
of AI tools to engineer software systems, the core challenges
of predicting defects and trusting AI, and the deep need of
reliable and explainable AI in the development workflow.

Software Engineering by and for Humans Machine learning, Gen-
erative AI and autonomous systems shape a new landscape
for software engineering by and for humans, and radically
change even the basic concept of software artifact [4]. The
new software systems challenge software engineers with new
ethical, fairness and technical problems. Humans become
integral part of large software ecosystems, and the research
in software engineering shall move beyond the shortsighted
vision of users of software systems, toward a new vision of
humans as integral part of cyber-physical ecosystems [24].
The discussion in the workshop has focused on how LLMs
bridge technical and human aspects, the ethical implications
of AI, and the need for continuous human oversight in soft-
ware development.

Sustainable Software Engineering The concept of sustainable de-
velopment extends beyond classic environmental concerns,
and spreads over software systems in cyber-physical spaces.
Sustainable software operations in cyber-physical spaces re-
quire new design, development, deployment, and mainte-
nance approaches that minimize the ecological footprint, en-
hance resource efficiency, and promote social responsibility.

https://www.liberatingstructures.com
https://conf.researchr.org/home/2030-se
https://conf.researchr.org/home/2030-se

The discussion in the workshop highlighted the complex in-
tertwine of societal, environmental, and economic perspec-
tives, the need for regulations and software sustainability
measures, and the energy inefficiency of AI models.

Automatic Programming Machine learning, and specifically deep
neural networks and large language models, are the largest
magnification factor of human productivity ever seen in soft-
ware engineering since the pioneer times. They open new
frontiers towards automatic programming, upset the qual-
ity and security scenario, and raise new societal and legal
issues. The discussion in the workshop focused on the role
of AI in generating code and upgrading legacy systems, and
in the challenges of context and prompt engineering.

Software Security Analysis The extensive usage of machine learn-
ing in software quality and security introduces new societal
and legal considerations [16]. As software systems grow
in complexity and scale, new security challenges emerge,
emphasizing the need for innovative approaches to secure
software engineering and cybersecurity [8] [17]. The discus-
sion in the workshop highlighted the importance of security-
aware tools for vulnerability detection and secure code gen-
eration, and the role of deep learning in anomaly detection
and secure software supply chains.

Validation and Verification Machine learning and AI upset the val-
idation and verification senario. On one side, the adaptive
and evolving nature of AI-driven systems changes the con-
cept itself of test input and oracle, on the other side machine
nearing and GAI open new frontiers to test automation We
need both a new conceptual approach to frame the problem
of testing and analyzing AI-driven software systems and new
studies on how exploit ML and GAI in software testing and
analysis. The discussion in the workshop focused on the
recent progress in knowledge compilation and meta-solvers
that enhanced the scalability of various software engineer-
ing tools, and on the impact on test-case generation and
configurable software analysis [13].

Quantum Software Engineering Quantum computing opens a new
class of software systems that share very little if any at all
with classic software systems. Quantum software engineer-
ing is still in its infancy and can greatly benefit from the
open-minded studies of experienced software engineers to-
wards new approaches to engineer quantum software sys-
tems. The discussion in the workshop focused on the chal-
lenges in quantum programming, including the lack of es-
tablished knowledge, new design and testing methodologies,
integration with classical systems, and the need for special-
ized education.

These research directions have significant implications for both
academia and industry. Long term academic research shall de-
velop new theories, methodologies, and educational curricula, to
improve a deeper understanding of emerging technologies and
their impacts. Industrial technology transfer shall use research re-
sults to design and implement innovative tools and practices that
can improve software development, software quality and security,
and address sustainability concerns. The following pie chart vi-
sualizes the trends of the discussion in the workshop, by showing
the word count from the notes taken during the 2030 Software
Engineering Roadmap workshop:

Sections 2–8 briefly overview the discussion in the seven areas.
Each section starts with a word cloud of the most frequent terms
from the notes of the 2030 Software Engineering Roadmap
workshop, presents an overview of the main results, two lists of
open research questions and future research directions, respec-
tively, and conclude with an

Area summary.

Section 9 concludes with a summary of the main results of the
2030 Software Engineering Roadmap workshop.

2. AI4SE

AI tools, like Copilot for code generation, are commonly inte-
grated in industrial software development workflows [12]. The key
open issues are (i) incorporating bug and vulnerability detection
in the workflow, to enhance software quality and security, and (ii)
guaranteeing trust in AI and explainability, especially in depend-
able or safety-critical systems. There is a need for AI development
processes that ensure the reliability and understandability of AI-
generated artifacts. We shall bridge software engineering and AI
to seamlessly integrate requirements in the development of AI
driven systems.

Open Research Issues

Explainability and Trust Ensuring that AI-generated outputs are
explainable and trustworthy, particularly in safety-critical
systems.

Quality Assurance Establishing quality measures for AI auto-co-
ding to ensure that AI-generated code meets high standards.

Defect and Vulnerability Prediction Incorporating AI-based bug de-
tection into the development workflow to enhance software
quality and security.

Feedback Loops and Knowledge Integration Implementing feedback
loops, using knowledge graphs, and enhancing more deter-
minism in AI systems.

Testing and Security Developing hybrid testing approaches using
AI and fuzzy techniques, and enforcing security guidelines
in LLMs [9].

Domain Adaptation Applying deep learning and LLMs to new do-
mains like quantum software engineering where data or well-
defined knowledge may be sparse.

Human-AI Collaboration Enhancing AI training processes with
human feedback, labeling, and crowdsourcing to improve
model performance.

Future Research Directions

Bridging AI and SE Developing methodologies that integrate AI
techniques into SE practices, focusing on sustainability, trans-
parency, security, trustworthiness, and compliance [5].

Contextual Learning Incorporating context into AI training, as
human learning heavily depends on contextual information.

Evaluating Costs Assessing the cost of training, fine-tuning, and
using LLMs from different perspectives to determine the ad-
vantages of AI over other alternatives.

New Domains and Applications Exploring the use of AI in new
domains such as quantum software engineering and low-
resource environments.

Collaboration Between Academia and Industry Redefining the role
of software engineers and adapting to the evolving landscape
of AI and SE.

By addressing these open research issues and exploring future
directions, the integration of AI in software engineering can be
enhanced, leading to increasingly reliable, secure, and efficient
software development processes.

AI4SE Future research should (i) develop robust quality mea-
sures for AI-generated code and integrate AI carefully into soft-
ware development workflows and (ii) improve AI training with
better feedback loops and multi-model approaches to address
non-functional requirements.

3. SOFTWARE ENGINEERING BY AND FOR
HUMANS

A core challenge that emerged in the 2030 Software Engineer-
ing Roadmap workshop is the disconnection between software
developers and users. Software engineers still build software for
users according to some specifications. Popular software engineer-
ing approaches, like scrum, attempt to seamlessly include some
users’ needs in the development process with the role of prod-
uct owner, however, there is still a large gap between users and
software engineers. Large Language Models (LLMs) can bridge
technical and human aspects [4]. Requirements engineering will
play a significant role in instructing the machine to correctly cap-
ture the needs of the many individual users [19], with most activ-
ities being automated. AI can accelerate innovation, by radically
changing the way humans interact with software systems. How-
ever, the role of humans in 2030 remains unclear. We need to
understand which tasks will be performed by humans and which
by AI. AI will dramatically xchange the way developers interact
with systems. Keeping humans in the loop is essential to ensure
meaningful engagement and development [23].

Open Research Issues

Ethical Rules and Regulations Defining and enforcing ethical rules
and regulations, far beyond the AI Act and specific laws that
have been recently approved.

Continuous Learning Mastering AI systems that continuously learn,
thus impacting the way we generate code and potentially on
human’s creativity.

Explainability and User Adaptation LLM interfaces to let humans
understand the decisions made in the background, and im-
prove explainability. There is a concern that humans are
adapting to systems rather than systems to humans, thus
leading to a scenario where humans become passive entities.

Human-Centric Design Defining software development processes
for humans, and balancing work-life and ethical issues [15].

Privacy and Regulations Rethinking both privacy by design and
regulations on sustainability and AI in the software devel-
opment process.

Diversity and Inclusion (DEI) Mastering the big AI systems’ di-
versity and inclusion challenges [10], by both improving fund-
ing for DEI initiatives and addressing uncertainties about
the impact on DEI research in academia.

Trust and Explainability Ensuring trust and understandability of
AI systems.

Future Research Directions

AI and Human Collaboration Studying the potential of AI to im-
prove both human-to-human and effective interactions [7].

Communication Channels Redefining communication channels be-
tween humans and AI systems as AI-powered tools, includ-
ing AI-powered developers.

Privacy and Sustainability Defining software development paradi-
gms and processes that implement privacy by design and
adhere to stringent sustainability and AI regulations.

Automated Software Development Exploring design paradigms for
fully AI-automated software development cycle from design
to deployment and testing in fast sandbox environments.

User Involvement Ensuring that humans are first class actors in
decision-making processes, and involving humans in system
construction to build trustful systems [20].

Transparency and Compliance Involving software engineering in
implementing tools that provide insights on model training,
enhancing transparency and compliance with upcoming reg-
ulations to democratize computer science and build trustful
AI systems.

DEI Research Addressing the inconsistency in the quality of Di-
versity, Equity, and Inclusion (DEI) papers, and improving
the reviewing processes to prevent the publication of mis-
leading studies.

Education and Training Educating a new generation of software
engineering, who can manage the new challenges of AI tools
and software engineering.

Software Engineering by and for Humans: Research should focus
on bridging the technical and human aspects of software engi-
neering and defining ethical rules for AI systems. Improving
human-to-human collaboration through AI and ensuring con-
tinuous human involvement are key to addressing ethical and
interaction challenges.

4. SUSTAINABLE SOFTWARE ENGINEERING

Sustainable software engineering is becoming increasingly criti-
cal as we consider the welfare, freedom, and freewill within the
human ecosystem. We need to approach sustainability from mul-
tiple perspectives: societal, environmental, and economic [1]. The
importance of sustainability today is driven by the enormous de-
mand for resources, evolving human values, and governmental
regulations [6].

Open Research Issues

Corporate Responsibility Defining regulation to ensure that orga-
nizations adopt sustainable practices and prevent unethical
data collection, as exemplified by cases like Meta3.

Energy Consumption Preventing useless usage of expensive and
unnecessary AI. AI processing requires substantial energy,
and LLMs are particularly energy inefficient [22]. Periodic
sustainability benchmarks could help monitor and improve
their impact. However, the negative impacts of LLMs on
companies are still largely unknown. This ties to explain-
ability that is a first required step to properly assign tasks
to different entities.

3The New York Times, “Meta Fined $1.3 Billion for Violating
E.U. Data Privacy Rules, https://www.nytimes.com/2023/05/
22/business/meta-facebook-eu-privacy-fine.html

Metrics for Sustainability Measuring the multiple facets of sus-
tainability from the inception of the projects. Software
waste and technical debt are pressing issues. We need met-
rics of software sustainability. However the concept of met-
rics itself is ill-defined.

Awareness and Education Raising awareness about sustainability
within companies, often unaware of the core issues of soft-
ware sustainability. Education plays a crucial role in foster-
ing a sustainable approach within the software engineering
community [21].

Trade-offs in Sustainability Assessing whether people are ready to
make these trade-offs. Sustainability often involves trade-
offs, such as balancing perfect services against resource con-
sumption.

Future Research Directions

Developing a Sustainability Mindset Studying and understanding
the different dimensions of sustainability and developing a
“sustainability mindset” within organizations. This involves
raising awareness among researchers about sustainability.

Modulating Resource Consumption Automatically distributing the
resource consumption of LLMs according to the nature of
the problem.

Regulatory Compliance Ensuring compliance with regulations and
laws that are increasingly tailored to software.

Developing Business Cases and Examples Developing business cases
and case studies to witness the importance of sustainable
practices.

Defining Sustainability Metrics and Benchmarks Defining sustain-
ability metrics and benchmarks to reduce the environmental
impact of software and AI systems. Establishing clear mea-
sures of software sustainability and integrating them from
the beginning of a project is crucial for long-term success.

Promoting Educational Initiatives Developing educational initia-
tives to improve a sustainable approach within the software
engineering community.

Sustainable Software Engineering: Research needs to develop
specific sustainability metrics and foster a sustainability mind-
set within organizations. It is essential to balance resource con-
sumption with service quality while minimizing software eco-
logical footprint.

5. AUTOMATIC PROGRAMMING

Machine learning and generative AI already provide powerful tools
for automatically generating code [14], and open important ques-
tions about the scalability of code generation as well as about
quality and trustfulness of the generated code.

https://www.nytimes.com/2023/05/22/business/meta-facebook-eu-privacy-fine.html
https://www.nytimes.com/2023/05/22/business/meta-facebook-eu-privacy-fine.html

Open Research Issues

Program Synthesis Defining scalable ML-driven approaches to syn-
thetize predictable, verifiable, and testable programs, by
taking advantage of the results of template-based approaches.

Automation and Human-in-the-Loop Defining LLM-based agent sys-
tems to build teams and incorporate feedback. The degree
of automation varies, and the human-in-the-loop issue may
evolve over time. We need LLM-based agent systems to
build teams and incorporate feedback.

Context and Adaptability Defining a comprehensive software en-
gineering approach that encompasses many abstract levels
such as requirements, architecture, specifications and vali-
dation, and is resistant to regulations, hardware, and archi-
tecture changes.

Validation and Formal Specifications Validating both system spec-
ifications and behavior through formal specifications, by trans-
forming natural language into an intermediate level and then
into code.

Domain-Specific Languages Defining domain-specific languages tai-
lored to different types of systems, and integrated with LLMs
for effective automatic programming.

Training Data and Model Performance Defining different models
for various application domains, to ensure that training data
do not lead AI to repeat human mistakes.

Human-in-the-Loop Interactions Keeping humans in the loop to
refine and improve the outcomes of automatic programming
that relies on the use of models.

Prototypes and Models Fast generating prototypes and models that
encompasses code, as well as requirements, test cases, and
design artifacts.

Conversational Approaches and Bug Handling Defining conversa-
tional approaches for improving requirements, and handling
bugs, especially in safety-critical systems and non-functional
requirements.

Training Data Quality Ensuring that training data do not lead AI
to repeat human mistakes is vital. Different models may be
required for various application domains.

Future Research Directions

Improving Program Synthesis Techniques Enhancing the longevity
and effectiveness of program synthesis techniques.

Enhancing LLM Style Code Generation Developing robust prompt
engineering methods, and integrating them into large sys-
tems.

Developing New Agent Systems Creating new agent systems based
on LLMs that can build teams and incorporate feedback.

Context-Aware Systems Defining approaches to produce systems
that adapt to changing contexts, such as regulations, hard-
ware, and architecture.

Establishing Validation Methods Developing methods to validate
system specifications and behavior through formal specifi-
cations.

Creating Domain-Specific Languages Defining domain-specific lan-
guages tailored to different systems, and integrating them
with LLMs, to improve the effectiveness of automatic pro-
gramming.

Ensuring High-Quality Training Data Ensuring that training data
are diverse and accurate, and developing models for different
application domains.

Enhancing Human-in-the-Loop Interactions Improving human-in-
the-loop interactions to refine and improve AI outcomes.

Utilizing Prototypes and Models Emphasizing the use of proto-
types and models in automatic programming.

Handling Bugs in Conversational Approaches Developing methods
to handle bugs effectively in conversational approaches to
improve the reliability of AI systems, especially in safety-
critical applications.

Software Quality with Automatic Programming: Future work
should (i) integrate code generation with Large Language Mod-
els (LLMs), (ii) improve prompt engineering techniques, (iii)
develop domain-specific languages specific for different system
types for improving software quality.

6. SOFTWARE SECURITY ANALYSIS

Software security analysis is crucial in today’s landscape, where
security threats and vulnerabilities are ever-present, and the do-
main language barrier complicates communication and tool inte-
gration, as terms have different meanings across various areas.

Open Research Issues

Domain Language Barrier Melting terms that are used with dif-
ferent meanings across areas by taking advantage of AI APIs
to bridge the gaps.

Static and Dynamic Analysis Techniques Reducing the extensive
validation and improving the usability of static and anal-
ysis techniques for find vulnerabilities.

Security-Aware Tools Defining security-aware tools that are piv-
otal in automatic vulnerability detection and compliance
processes, such as risk modeling and minimum elements
compliance.

Generating Secure Code Leveraging prompts and ensuring that
LLMs contribute effectively, despite lower performance in
dynamic analysis scenarios.

Detecting and Fixing Vulnerabilities Guaranteeing continuous com-
mitment in vulnerability data and complexity in anomaly
detection.

Deep Learning for Anomaly Detection Defining simple deep learn-
ing approaches to detect anomalies, and explain decisions.

Privacy Issues and Software Supply Chain Practices Enhancing API
usability for developers with varying security expertise, and
training developers with expertise in secure practices con-
forming to European Union data regulations.

AI Tools for Secure Algorithms Producing secure algorithms through
a mix of experts, from natural language to machine instruc-
tions, requires tools for secure logic review [17].

Legal Accountability and Continuous Security Compliance Balancing
legal and technical aspects for critical as well as non-critical
systems, to both empower users and secure the interactions.

Edge Computation for Security Enhancing security by minimiz-
ing data exposure, vulnerabilities and securing system in-
teractions, to prevent attacks to public institutes.

Learning Systems and AI in Security Defending against AI-based
attacks and securing against vulnerabilities emphasizes the
need for research in software security.

Future Research Directions

Addressing Domain Language Barriers Developing standardized ter-
minology and AI APIs to improve communication and tool
integration across different areas.

Improving Static and Dynamic Analysis Techniques Improving the
usability and validation of tools to effectively uncover vul-
nerabilities.

Advancing Security-Aware Tools Creating effective automatic vul-
nerability detection tools and compliance processes, to both
improve risk modeling and ensure compliance with security
standards.

Enhancing Secure Code Generation Improving prompts and LLM
performance in dynamic analysis scenarios, to generate more
secure code.

Balancing Vulnerability Data Addressing the imbalance in vulner-
ability data, and simplifying anomaly detection methods, to
improve detection and fixing processes.

Simplifying Deep Learning Anomaly Detection Developing deep lear-
ning-based anomaly detection that is both explainable and
user-friendly.

Streamlining Security Issue Reporting Developing a responsive and
efficient vulnerability disclosure process.

Strengthening Privacy and Supply Chain Security Enhancing secure
software supply chain practices and complying with EU data
regulations.

Developing AI Tools for Secure Algorithms Creating tools that com-
bine expert knowledge and AI to produce and review secure
algorithms.

Ensuring Legal Accountability and Continuous Compliance Imple-
menting continuous security compliance processes for both
critical and non-critical systems.

Utilizing Edge Computation for Security Enhancing security by re-
ducing data exposure and vulnerabilities, and addressing
federation attacks.

Researching AI in Security Investigating the relationship between
learning systems and AI to defend against AI-based attacks
and secure systems.

Software Security Analysis: The research shall focus on (i) im-
proving security-aware tools and anomaly detection with LLMs,
(ii) improving the vulnerability disclosure process and (iii) se-
curing software supply chains for robust software security.

7. VALIDATION AND VERIFICATION

Validating and verifying (V&V) code generated by machines poses
unique challenges, and raises questions about how to assess quality
and efficiency and ensure reliability of automatically generated
software systems [3]. Requirements engineering in the context of
AI systems demands transparency and new evaluation methods
beyond traditional standards. Prompt engineering is crucial, as
changing prompts can yield different outcomes from LLMs.

Open Research Issues

Quality and Efficiency Assessment Evaluating the quality, efficiency
and reliability of machine-generated code.

Transparency in Requirements Engineering defining quality stan-
dards for machine-generated code, by incorporating trans-
parency and trustfulness.

Impact of Prompt Engineering Defining consistent and effective
prompt engineering strategies with predictable variability
in the outcomes.

New Testing Methods Defining continuous validation approaches
for evaluating machine-generated code [9].

Domain-Specific Needs Defining domain-specific methodologies to
validate the requirements of different domains.

Robust Requirements Writing Writing robust quality requirements
for automatically generate code, especially when automat-
ing code generation with LLMs.

Adapting Education in Requirement Engineering Training for re-
quirement engineering by focusing on AI, automatic testing,
and specialized processes.

Future Research Directions

Innovative Approaches to Prototyping Defining approaches for rapid
prototyping from requirements, adapting to organizational
contexts, and leveraging AI as a team member alongside
domain experts to facilitate dialogue and ensure clarity [2].

Evolving Role of Requirement Engineers Improving the detection
and refinement of requirements through collaborative tools
and diverse data sets, with AI capabilities playing a signifi-
cant role [19].

Human-Computer Interaction (HCI) in V&V Defining streamlin-
ing requirement processes with LLMs using HCI principles
to ensure robust validation and verification.

Continuous Validation and Updates Establishing continuous vali-
dation processes to keep up with evolving requirements and
AI capabilities.

Improved Testing Methodologies Developing new testing method-
ologies that address the complexities of AI-generated code
and the specific needs of various domains.

Integration of AI in Requirement Engineering Education Adapting
educational programs to include AI-focused training for re-
quirement engineering, emphasizing the importance of au-
tomatic testing and specialized processes.

AI-Assisted Requirement Refinement Utilizing AI to assist in the
refinement and interpretation of requirements, ensuring ac-
curacy and completeness.

Validation and Verification: Research should develop new eval-
uation methods and use AI to refine requirements and improve
V&V transparency, by focusing on the improvement of human-
computer interaction (HCI) in V&V processes for robust vali-
dation and verification of AI-generated code.

8. QUANTUM SOFTWARE ENGINEERING

Quantum Engineering raises unique challenges and requires deep
changes in software engineering paradigms to cope with the dis-
tinctive characteristics of quantum computing. Requirements en-
gineering remains fundamental, yet it may significantly differ from
classic approaches. Programming in quantum environments re-
sembles low-level assembly coding, and emphasizes the need for
specialized education and training. Integration of quantum and
classical computing systems may be possible with hybrid GPU
setups.

Open Research Issues

Lack of Established Abstractions and Approaches Defining require-
ments engineering, adaptation, and design approaches that
cope with the different abstractions in quantum program-
ming.

Testing Methodologies Defining testing strategies for the non-replicable
nature of qbit states of quantum software systems [18].

Non-Determinism and Compatibility Defining approaches that han-
dle the non-determinism nature of quantum software sys-
tems and address the incompatibility with classic software
architectures.

New Programming Paradigms Developing a mindset, programming
paradigm, programming languages and methodologies for
the distinctive nature of quantum engineering.

Energy-Intensive Hardware Balancing quantum and traditional com-
putational resources to deal with the high energy costs of
quantum computing.

Common Abstractions Developing common abstractions across quan-
tum and traditional computing domains.

Specialized Education and Training Developing training material
for educating and training quantum engineers and program-
mers.

Future Research Directions

Innovative Design and Requirements Engineering Exploring new ap-
proaches to design and requirements engineering that ac-
commodate the unique characteristics of quantum systems.

Testing and Verification Strategies Developing novel testing and
verification strategies that account for the physical prop-
erties and non-deterministic nature of quantum comput-
ing [18].

Interdisciplinary Collaboration Leveraging interdisciplinary collab-
oration to navigate hardware constraints and address the
unique demands of quantum software engineering.

Integration with Classical Systems Investigating the integration of
quantum and classical computing systems to create hybrid
solutions.

Education and Training Programs Establishing specialized educa-
tion and training programs to equip software engineers with
the necessary skills for quantum programming.

Energy Efficiency Researching ways to optimize energy consump-
tion in quantum computing, balancing computation alloca-
tion between quantum and traditional hardware.

Development of New Languages Creating new programming lan-
guages and methodologies tailored to the unique require-
ments of quantum computing.

Common Abstractions and Frameworks Developing common ab-
stractions and frameworks to bridge the gap between quan-
tum and classical computing paradigms.

Quantum Software Engineering: Research should focus on (i)
new design approaches and specialized training for quantum
software to tackle unique quantum system challenges, and (ii)
common abstractions for integrating quantum and classical
computing systems.

9. FINAL CONSIDERATIONS

In the 2030 Software Engineering Roadmap workshop we
focus on seven core areas that deeply challenges the software en-
gineering research and that we summarize in Table 1:

Artificial Intelligence for Software Engineering (AI4SE) The main
challenges in AI4SE involve ensuring trust in AI-generated
outputs and integrating AI tools into the software develop-
ment workflow. Future research should focus on enhancing
AI training processes, improving model performance through
multi-model approaches and feedback loops, and addressing
non-functional requirements.

Software Engineering by and for Humans The key challenge of Ai-
powered systems is the disconnection between software de-
velopers and users. Ethical implications and continuous hu-
man involvement are crucial. Future research directions in-
clude bridging the technical and human aspects of software
engineering, defining ethical rules and regulations, and en-
hancing human-to-human collaboration facilitated by AI.

Sustainable Software Engineering The environmental impact of soft-
ware, including the energy inefficiency of LLMs, and soft-
ware waste are significant concerns. Future research should
aim to develop sustainability benchmarks, build a sustain-
ability mindset within organizations, and balance resource
consumption with software quality.

Automatic Programming The core challenges of automatic pro-
gramming include understanding the capabilities of models
and developing new techniques for context and prompt en-
gineering. Future research should focus on integrating code
generation with LLMs, improving prompt engineering, and
developing domain-specific languages and methodologies fo-
cused on automated programming.

Software Security Analysis Domain language barriers and usabil-
ity challenges hinder effective security analysis. Future re-
search directions include improving security-aware tools for
automatic vulnerability detection, improving anomaly de-
tection with deep learning, and developing secure software
supply chain practices that comply with regulatory stan-
dards.

Validation and Verification (V&V) Validating and verifying machine-
generated code presents unique challenges. Future research
should develop new evaluation methods, leverage AI for re-
quirement refinement, and improve human-computer inter-
action in V&V processes to ensure robust validation and
verification.

Quantum Software Engineering Quantum software engineering is
an emerging field, with significant knowledge gaps and non-
determinism challenges. Future research should focus on de-
veloping new design approaches, providing specialized edu-
cation and training in quantum programming, and exploring

common abstractions for integrating quantum and classical
computing systems.

The 25/10 Crowd Sourcing4 panel highlighted five top research
challenges:

Challenge SUM MEAN

Evaluating the impact of future systems on so-
ciety and sustainability

37 4.75

Measuring sustainability 34 4.40
Requirements for ML-enabled socio-technical
systems

25 4.25

Cross-cutting requirements (security perfor-
mance, sustainability)

25 4.17

Empowering the interactions between humans
and self-adaptive autonomous systems

25 4.17

Impact of future systems on society and sustainability emerges as
the most critical challenge with the highest sum of votes (37)
and the highest mean score (4.75). This indicates a strong
consensus on the importance of understanding how future
technologies will affect societal and environmental aspects,
reflecting a growing concern for sustainability and human-
centric engineering.

Measuring sustainability is also highly rated, with a sum of 34 and
a mean score of 4.40. This challenge highlights the need for
effective metrics to quantify sustainability, which is crucial
for making informed decisions about technology deployment
and its long-term effects.

Requirements for ML-enabled socio-technical systems and Cross--
cutting requirements (security performance, sustainability)
both received the same cumulative rate (25) and mean score
(4.17). The focus on machine learning-enabled systems and
cross-cutting requirements suggests a significant interest in
addressing the integration of advanced technologies with
comprehensive criteria that include security and sustainabil-
ity.

Approaches to empower users interactions with self-adaptive au-
tonomous systems also scored a mean of 4.17. This challenge
emphasized the need to design systems that both prioritize
user needs and improve user experience, by ensuring that
technology effectively serves the human needs.

The results clearly reflect the emphasis on the disruptive effects
of AI, user-centric approaches and sustainability in the develop-
ment of future software systems. These challenges reveal key areas
where future research and development efforts should be concen-
trated to align technological advancements with societal needs
and expectations.

Overall, the 2030 Software Engineering Roadmap workshop
has provided a comprehensive overview of the current and fu-
ture trends in software engineering. The integration of AI, quan-
tum computing, and autonomous systems into software engineer-
ing practices represents a paradigm shift, bringing significant ad-
vancements and posing new challenges. As the software engineer-
ing community addresses these changes, it is essential to focus
4An excellent introduction to the liberating structure
is available at https://www.liberatingstructures.com/
12-2510-crowd-sourcing/

https://www.liberatingstructures.com/12-2510-crowd-sourcing/
https://www.liberatingstructures.com/12-2510-crowd-sourcing/

Table 1: 2030 Open Issues and Future Research Directions in Software Engineering

Topic Main Open Issues Future Research Directions

AI for Software Engineering Trust in machine-generated code, explain-
ability, integration into workflows, quality
measures for machine-generated code

Improving model performance with multi-
models, defining feedback loops, address-
ing non-functional requirements, Improv-
ing trainings

Software Engineering by and for
Humans

Disconnection between developers and
users, ethical implications, continuous hu-
man involvement

Bridging technical and human aspects,
defining ethical rules and regulations, en-
hancing AI-human collaboration

Sustainable Software Engineering Environmental impact, technical debt, en-
ergy inefficiency of LLMs

Developing sustainability metrics, build-
ing a sustainability mindset, balancing re-
source consumption with software quality

Automatic Programming Capabilities of models, development of new
techniques, context and prompt engineer-
ing

Integrating program synthesis and LLMs,
improving prompt engineering, developing
domain-specific languages

Software Security Analysis Domain language barriers, usability chal-
lenges, continuous vulnerability detection

Improving security-aware tools, improving
anomaly detection with deep learning, se-
cure software supply chain practices

Validation and Verification (V&V) Quality assessment of machine-generated
code, transparency in requirements engi-
neering, domain-specific needs

Developing new evaluation methods, lever-
aging AI for requirement refinement, en-
hancing HCI in V&V processes

Quantum Software Engineering Lack of quantum physics knowledge, non-
determinism, compatibility with classical
computing

Developing new design approaches, spe-
cialized education and training, explor-
ing common abstractions for quantum and
classical systems

on ethical considerations, sustainability, security, and the evolv-
ing role of humans within software ecosystems. The collaboration
between academia and industry will be crucial in redefining the
role of software engineers and adapting to the rapidly evolving
landscape of software engineering. By embracing these challenges
and opportunities, the software engineering community can build
a resilient and innovative future, ensuring that software systems
remain reliable, secure, and aligned with societal values.

Acknowledgment
We would like to thank Daniel Russo for the invaluable help in
defining the ideal liberation structure for the program of the work-
shop.

10. REFERENCES
[1] Coral Calero, Félix O. Garćıa, Gabriel Alberto

Garćıa-Mireles, M. Ángeles Moraga, and Aurora Vizcáıno.
Addressing sustainability-in software challenges, 2024.

[2] Roberto Casadei, Gianluca Aguzzi, Giorgio Audrito,
Ferruccio Damiani, Danilo Pianini, Giordano Scarso,
Gianluca Torta, and Mirko Viroli. Software engineering for
collective cyber-physical ecosystems, 2024.

[3] Johan Cederbladh and Antonio Cicchetti. A road-map for
transferring software engineering methods for model-based
early v&v of behaviour to systems engineering, 2024.

[4] Matteo Ciniselli, Niccolò Puccinelli, Ketai Qiu, and Luca Di
Grazia. From today’s code to tomorrow’s symphony: The ai
transformation of developer’s routine by 2030, 2024.

[5] Aline de Campos, Jorge Melegati, Nicolas Nascimento,
Rafael Chanin, Afonso Sales, and Igor Wiese. Some things
never change: how far generative ai can really change
software engineering practice, 2024.

[6] Lidia Fuentes. Engineering software for next-generation
networks in a sustainable way, June 2024.

[7] Ahmed E Hassan, Gustavo A Oliva, Dayi Lin, Boyuan
Chen, Zhen Ming, et al. Rethinking software engineering in
the foundation model era: From task-driven ai copilots to
goal-driven ai pair programmers. arXiv preprint
arXiv:2404.10225, 2024.

[8] Junda He, Christoph Treude, and David Lo. Llm-based
multi-agent systems for software engineering: Vision and
the road ahead, 2024.

[9] Sinclair Hudson, Sophia Jit, Boyue Caroline Hu, and
Marsha Chechik. A software engineering perspective on
testing large language models: Research, practice, tools and
benchmarks, 2024.

[10] Sonja M. Hyrynsalmi, Sebastian Baltes, Chris Brown,
Rafael Prikladnicki, Gema Rodriguez-Perez, Alexander
Serebrenik, Jocelyn Simmonds, Bianca Trinkenreich,
Yi Wang, and Grischa Liebel. Bridging gaps, building
futures: Advancing software developer diversity and
inclusion through future-oriented research, 2024.

[11] Victoria Jackson, Bogdan Vasilescu, Daniel Russo, Paul
Ralph, Maliheh Izadi, Rafael Prikladnicki, Sarah D’Angelo,
Sarah Inman, Anielle Lisboa, and Andre van der Hoek.
Creativity, generative ai, and software development: A
research agenda, 2024.

[12] Marcus Kessel and Colin Atkinson. Morescient gai for
software engineering, 2024.

[13] Rui Li, Huai Liu, Pak-Lok Poon, Dave Towey, Chang-Ai
Sun, Zheng Zheng, Zhi Quan Zhou, and Tsong Yueh Chen.
Metamorphic relation generation: State of the art and
visions for future research, 2024.

[14] Michael R. Lyu, Baishakhi Ray, Abhik Roychoudhury,
Shin Hwei Tan, and Patanamon Thongtanunam. Automatic
programming: Large language models and beyond, 2024.

[15] Antonio Mastropaolo, Camilo Escobar-Velásquez, and
Mario Linares-Vásquez. The rise and fall(?) of software

engineering, 2024.

[16] Facundo Molina and Alessandra Gorla. Test oracle
automation in the era of llms, 2024.

[17] Nikhil Patnaik, Joseph Hallett, and Awais Rashid. Saltzer
& schroeder for 2030: Security engineering principles in a
world of ai, 07 2024.

[18] Neilson Carlos Leite Ramalho, Higor Amario de Souza, and
Marcos Lordello Chaim. Testing and debugging quantum
programs: The road to 2030, 2024.

[19] Diana Robinson, Christian Cabrera, Andrew D. Gordon,
Neil D. Lawrence, and Lars Mennen. Requirements are all
you need: The final frontier for end-user software
engineering, 2024.

[20] Martina De Sanctis, Paola Inverardi, and Patrizio

Pelliccione. Engineering digital systems for humanity:
Challenges and opportunities, 2024.

[21] Hatef Shamshiri, Ashok Tripathi, Shola Oyedeji, and Jari
Porras. Exploring the experiences of experts: Sustainability
in agile software development – insights from the finnish
software industry, 2024.

[22] Jieke Shi, Zhou Yang, and David Lo. Efficient and green
large language models for software engineering: Vision and
the road ahead, 2024.

[23] Valerio Terragni, Partha Roop, and Kelly Blincoe. The
future of software engineering in an ai-driven world, 2024.

[24] Qing Wang, Junjie Wang, Mingyang Li, Yawen Wang, and
Zhe Liu. A roadmap for software testing in open
collaborative development environments, 2024.

	Introduction
	AI4SE
	Software Engineering by and for Humans
	Sustainable Software Engineering
	automatic Programming
	Software Security Analysis
	Validation and Verification
	Quantum Software Engineering
	Final Considerations
	References

