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Abstract

Continental Pronto unifies high availability and
disaster resilience at the specification and imple-
mentation levels. At the specification level, Conti-
nental Pronto formalizes the client’s view of a sys-
tem addressing local-area and wide-area data repli-
cation within a single framework. At the imple-
mentation level, Continental Pronto makes data
highly available and disaster resilient. The algo-
rithm provides disaster resilience with a cost simi-
lar to traditional 1-safe and 2-safe algorithms and
provides highly-available data with o cost similar
to algorithms tailored for that purpose.

1 Introduction

Increasingly, online databases must be contin-
uously available. To remain available in the pres-
ence of disasters, such as earthquakes and floods,
critical online databases typically run in multiple,
geographically dispersed data centers. Each data
center contains a complete copy of the database,
and these copies operate in a primary-backup
manner: clients are connected to a single pri-
mary data center, and the other data centers are
in stand-by mode waiting to take over if the pri-
mary suffers a disaster. In some cases, clients can
also connect to backup data centers, but only to
request queries. Data centers are connected via
wide-area networks, and because of severe conse-
quences (e.g., client re-connections), the take-over
process—when a backup data center becomes the
new primary data center—usually involves human
operators. The backup data centers may use time-
outs to detect disasters in the primary, but the
actual fail-over requires operator approval.

Current data centers consist of clusters of
servers, with servers within a cluster connected
through a local-area network. This local-area
replication (within a data center) aims to in-
crease both the scalability and availability of the
database. In terms of availability, the local-area
replication enables the database to survive non-
disaster failures without activating a backup data
center: another replica within the primary data
center can take over in case of non-disaster fail-
ures, such as process crashes, disk crashes, ma-
chine crashes, and so on. Thus database avail-
ability involves both local-area replication within
a single data center, for non-disaster failures, and
wide-area replication across data centers, for dis-
aster recovery.

However, combining conventional local-area
with wide-area mechanisms is not trivial. For ex-
ample, assume that a local-area replication mech-
anism replicates a data item z in two databases
d and d', both in the same data center. For effi-
ciency reasons, we do not want both d and d' to
propagate the same updates to z to the backup
data centers. On the other hand, we want to
propagate each update to z in a fault-tolerant
manner—we do not want an update to be lost
if either d or d' goes down. Continental Pronto
provides both local-area and wide-area replication
in an integrated manner, and does so for general
system configurations with an arbitrary number of
data centers that each contain an arbitrary num-
ber of databases. Although Continental Pronto
can be run in arbitrary system configurations, its
performance is similar to classical point solutions
when run in system configurations for which those
point solutions are defined. For example, we can
run Continental Pronto in a single data center
only. In this configuration, its performance is sim-



ilar to protocols that provide local-area replication
only [13]. We can also run Continental Pronto in a
configuration with 2 data centers (or more), each
with a single database. Continental Pronto then
behaves like either a classical 1-safe or a classical
2-safe disaster-recovery protocol—the choice of 1-
safe and 2-safe is configurable.

One of the features of Continental Pronto is
that it uses transaction shipping for both local-
area and wide-area replication. For example,
database replication within a data center is used
to ensure that the disaster-recovery protocol it-
self can tolerate local failures. Residing above
the database allows us to cope with heterogeneous
systems because we rely on a standard interface
only (e.g., JDBC). Finally, by using transactions
as the unit of replication and shipping, we have
access to a higher level of semantic information
about data updates as compared to transaction
log mechanisms.

The rest of the paper is structured as fol-
lows. Section 2 introduces the system model and
some terminology. Section 3 discusses Continental
Pronto properties. Section 4 presents Continental
Pronto in detail. Section 5 assess the performance
of Continental Pronto, Section 7 discusses related
work, and Section 6 concludes the paper.

2 System Model and Definitions
2.1 Processes and Groups

We consider a system composed of two disjoint
sets of processes, the Clients set and the Databases
set. To capture the notion of data center, we sub-
divide the Databases set into subsets, Gy, ...,Gy.
We refer to each subset G, as a group of databases
(or simply a group), G, = {di1,dz,...,d,, }. We
assume that there are “logical” communication
links connecting all processes—in practice, sev-
eral logical links can be multiplexed over the same
physical link, and that links connecting databases
within the same group transmit messages more
efficiently than links connecting databases across
groups. Figure 1 depicts a typical system that
exemplifies our model. Each group is internally
connected through a local-area network. Differ-
ent groups communicate via wide-area networks.
These wide-area network links can either be leased
lines or part of the public Internet. Clients con-
nect to the groups via the public Internet.
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Figure 1: System model

Clients communicate with databases by mes-
sage passing and can establish a connection with
any database. Databases communicate with each
other using the Hierarchical Atomic Broadcast ab-
straction defined in Section 2.3. We do not make
assumptions about message-delivery times nor the
time it takes for a process to execute individual
steps of its local algorithm.

Processes (clients and databases) can fail by
crashing, that is, when a process fails, it perma-
nently stops executing its algorithm—we do not
consider Byzantine failures. A correct process is
one that does not fail. Database processes may
also recover after a crash, but for simplicity we
do not introduce database recovery explicitly in
the model—we address database recovery in [5].
A disaster is an event that makes a group perma-
nently unable to perform its intended function.
We define the notion of disaster based on the ag-
gregate failure of databases: a group G, suffers
a disaster if a certain number k,,0 < k; < ng,
of databases in G, have failed.! We say that a
group is operational if it does not suffer a disaster;
a group that suffers a disaster is non-operational.
In this paper, we assume that at least one group
is operational.

2.2 Failure and Disaster Detectors

We equip the system with failure detectors and
disaster detectors. A failure detector D, gives in-
formation about the possible crash of databases in
a group G, to databases in G, and to the clients.
In general, if the failure detector of process p re-
turns a set that includes a database d, we say that

lParameter k, is not necessarily equal to ng; in some
cases, the failure of a majority of databases in a group
may prevent the remaining ones in the same group from
performing their intended function—in such a case, k; =
[(ns +1)/21.



p suspects d. We assume that eventually, every
database in G, that crashes is permanently sus-
pected by every correct database in G, and by ev-
ery correct client; and that if group G, contains a
correct database, then there is a time after which
this database is never suspected by any correct
database in G, or by any correct client (i.e., D,
belongs to the class of eventually strong failure
detectors [3]).

Disaster detectors are defined using similar ma-
chinery as failure detectors. If a disaster detector
DD returns a set of groups including group G,
to a process p, we say that p suspects G, to be
non-operational. We assume that every group G,
that contains fewer than k, correct databases is
eventually permanently suspected by every cor-
rect process. Moreover, no group G, is suspected
by any database if it contains k, or more correct
databases. That is, each database has access to a
disaster detector that is perfect in the sense of [3].
In contrast, clients have access to a weaker dis-
aster detector DD,.: eventually, no group G, is
suspected by any client if it contains k, or more
correct databases. That is, clients have access to a
disaster detector that is eventually perfect in the
sense of [3].

Our decision to give each database access to
a perfect disaster detector reflects our assump-
tions about Continental Pronto’s execution en-
vironment. Continental Pronto executes in a
number of data centers—modeled as groups—and
these data centers are configured in a primary-
backup fashion. Appointing a new data center as
the primary data center is an expensive operation
that usually is only initiated in response to dis-
asters. Because data center fail-over is expensive,
the decision to initiate such an operation is usu-
ally made by a human operator. We refer to this
kind of fail-over as “push-button” fail-over since
there is a human in the loop. With push-button
fail-over, the detection of disasters is more accu-
rate since operators in different data centers can
potentially verify disaster suspicions. Moreover,
it is possible to enforce the appearance of a dis-
aster, for example by shutting down computers
manually, before initiating a fail-over operation.

Clients have access to an eventually perfect dis-
aster detector. This reflects our assumption that
the network connection between clients and the
primary data center may undergo instability peri-
ods, during which clients may incorrectly suspect
the primary data center to be non-operational,

but will eventually stabilize for long enough to
ensure that “useful” computation can be done.

2.3 Hierarchical Atomic Broadcast

In the following, we define Hierarchical Atomic
Broadcast (HABcast), the communication ab-
straction used by databases to communicate in
Continental Pronto. HABcast uses the notions of
failure detectors and disaster detectors and trades
communication within groups for communication
across groups.

The HABcast abstraction is defined by the
primitives Broadcast(m), Deliver(1-SAFE,m), and
Deliver(2-saFE, m). If a correct database in an
operational group executes Broadcast(m), it even-
tually executes Deliver(1-SAFE, m) and Deliver(2-
SAFE, m). HABcast also ensures the following
properties (in stating the properties, we assume
next that sender(m) is the database that exe-
cutes Broadcast(m), and group(m) is sender(m)’s
group).

e HB-1: If a database in an operational group
executes Deliver(1-SAFE, m), then every
correct database in each operational group
eventually executes Deliver(1-SAFE, m).

e HB-2: If a database in group(m) exe-
cutes Deliver(2-SAFE, m), then every cor-
rect database in each operational group
eventually executes Deliver(2-SAFE, m).?

In the absence of disasters, both properties HB-
1 and HB-2 ensure that messages are delivered by
every correct database in each operational group.
In the presence of disasters the properties differ.
If a database executes Deliver(1-SAFE, m) and
group(m) suffers a disaster, there is no guarantee
that correct databases in other operational groups
will also execute Deliver(1-SAFE, m). However,
that is not the case if a database in group(m) ex-
ecutes Deliver(2-SAFE, m) and then group(m) suf-
fers a disaster: every correct database in each op-
erational group will also execute Deliver(2-SAFE,
m). To ensure property HB-2, databases have to
exchange messages across groups, and, as a result,

2Notice that HB-2 is not the uniform counterpart of HB-
1, in the sense of [8]—which is “If a database executes
Deliver(2-SAFE, m), then every correct database in each op-
erational group eventually executes Deliver(2-SAFE, m).”
HABcast takes advantage of the “asymmetry” in HB-2 to
reduce the number of messages exchanged between groups.



Deliver(1-SAFE, m) can be implemented more ef-
ficiently than Deliver(2-SAFE, m)—we revisit this
issue in Section 5.

Moreover, HABcast guarantees that:

e HB-3: If two databases execute Deliver(1-
SAFE, m) and Deliver(1-SAFE, m’), then
they do so in the same order.

e HB-4: No database executes Deliver(2-SAFE,
m) before executing Deliver(1-SAFE, m).

Property HB-3 states that messages of the type
Deliver(1-SAFE, — ) are globally ordered, and
property HB-4 specifies a constraint on the order
in which messages are locally delivered.

2.4 Databases and Transactions

Database processes implement a number of
primitive operations. These primitives capture
the behavior of commercial database systems, as
accessed through standard APIs, such as JDBC.
A transaction is started with the begin primi-
tive, and terminated with either the commit or
the abort primitives. While a transaction is ac-
tive, we can use the exec primitive to execute SQL
statements within the transaction. We assume
that all the primitives are non-blocking: if we call
a primitive on a database and the database does
not crash, the primitive will eventually return.

Besides the primitives, we also make the follow-
ing assumptions about every database d;:

e DB-1: Transactions are serialized by d; using
strict two-phase locking (strict 2PL).

e DB-2: If d; is correct, there is a time after
which d; commits every transaction that it
executes.

The first property, as known as serializability,
ensures that any concurrent transaction execution
£ has the same effect on the database as some se-
rial execution & of the same transactions in £ [2].
Furthermore, strict-2PL schedulers ensure that if
transactions t, and t, conflict® and t, has been
committed before ¢, by d; in some execution &,
then t, precedes t; in any serial execution &£, that
is equivalent to & [2].

The second property, although not explicitly
stated as such, is often assumed to be satisfied

3Two transactions conflict if they both access the same
data item and at least one of the operations modifies it.

by database systems. The property reflects the
fact that in general, databases do not guarantee
that a submitted transaction will commit (e.g.,
the transaction may get involved in a deadlock
and have to be aborted) but the chances that a
database aborts all transactions that it processes
is very low—of course, this property assumes that
transactions do not request an abort operation.

3 Problem Specification

We outline next the properties that character-
ize what it means for a data replication protocol
such as Continental Pronto to be correct. The
first property requires the replication algorithm
to provide the illusion that there is only a single
copy of each data item:

e CP-1: Every execution consisting of all com-
mitted transactions in a group is 1-copy se-
rializable [2].

The second property forces the replication al-
gorithm to make progress if it is initiated by a
client. To state this property, we first introduce
the notion of a job . A job is the transactional
logic that a client executes to manipulate the
replicated data in the system. To handle fail-
ures and disasters, this logic may execute mul-
tiple physical transactions. For example, the logic
may start a transaction against one database,
and, if that database fails, retry the same logic
against another database, giving rise to another
physical transaction. We say that a client sub-
mits a job when it starts to execute the job’s
logic, which may encompass generic retry logic
and transaction-specific SQL statements. We say
that a client delivers a job when the job execution
is complete.

e CP-2: If a client submits a job j, and does
not crash, then it will eventually deliver j.

Delivering a job captures successful completion:
a physical transaction has committed in some
database, and the client has the result of the trans-
action (e.g., a confirmation number for a hotel
reservation).

Property CP-2 ensures that the effects of a job
are durable in a single database. However, for a
replicated database system, we need a global no-
tion of durability. Informally, what we want to



ensure is that if a client successfully updates the
state of a particular database (i.e., delivers a job),
then those updates are visible in all databases that
the client may subsequently connect or fail over to.
Based on the conventional concepts of 1-safe and
2-safe disaster recovery [7], we identify two levels
of durability: 1-safe durability and 2-safe dura-
bility. These durability levels generalize the con-
ventional 1-safe and 2-safe characterization to a
system where we rely on local replication for high
availability and wide-area replication for disaster
recovery.
We formulate 1-safe durability as follows:

e CP-3: If a database in an operational group
commits a transaction ¢, then all correct
databases in all operational groups commit
t.

Property CcP-3 in conjunction with CP-2 en-
sures that if the client delivers a job, and no dis-
asters happen, the job’s transactional updates are
propagated to all databases in the system. If a
disaster happens, 1-safe durability may give rise
to “lost transactions:” the client may deliver a
job and then subsequently fail over to a database
whose state does not reflect the job’s updates. In
contrast, 2-safe durability prevents lost transac-
tions:

e CP-4: If a client delivers a job j then all cor-
rect databases in all operational groups com-
mit the transactional updates performed by

j-

Continental Pronto ensures either CP-3 or CP-
4. Furthermore, the choice between these dura-
bility levels is configurable.

Finally, to provide global consistency, we re-
quire that databases in different groups commit
conflicting transactions in the same order. Prop-
erty CP-1 makes sure that this holds for databases
in the same group, but it does not prevent the case
where a database d; in a group commits a trans-
action t before a conflicting transaction ¢’ and an-
other database d;, in a distinct group, commits ¢’
before ¢, as long as both d; and d; are consistent.
Property cP-5 handles this case:

e CP-5: If two databases commit conflicting
transactions t and t', they do so in the same
order.

4 Continental Pronto

Continental Pronto is based on the primary-
backup replication model: a single database is ap-
pointed as global primary, and all other databases
are backups. Clients connect to the primary
database to submit update transactions; read-
only transactions, or queries, can be executed
against any database, be it in the same group as
the primary or not.

Algorithm 1 Database d; in group G,

1: Initialization:

N

e; 1
prmy-grp; < 1
4:  prmydb; <1

@

: To execute a transaction:

ot

when receive (tq, request) from ¢ do
case request = begin(job_id, durability, t,):
if di # prmy_db; or G, # prmy_grp; then
send (tq, “I'M NOT PRIMARY”) to client(tq)
10: else

11: client(tq) < c

12: job(te) < job_id

13: level(ty) < durability

14: state(t,) < EXECUTING

15: begin(t,)

16: wait for response(t,, result)
17: send (tq,result) to client(ta)

18:  case (request = exec(tq, sql-req) or
request = abort(t,)) and
state(t,) = EXECUTING:

19: exec task

20: exec(tq, sql-req)

21: wait for response(t,, result)
22: if result = ABORTED then
23: state(t,) ¢ ABORTED

24: send (tq,result) to client(ts)

25: case request = commit(¢,) and
state(t,) = EXECUTING:

26: state(t,) < COMMITTING
27: sql-seq < all exec(tq, sql-req) in order
28: Broadcast(df, G, ei, tq, client(ts), job(ts),

level(ta), sql-seq)

In the following we present an overview of Con-
tinental Pronto and its main algorithm. The com-
plete algorithm and its detailed explanation and
proof of correctness can be found in [5].



Normal operation. In the absence of fail-
ures, disasters, and suspicions, the protocol works
as follows—we consider next only update trans-
actions; queries are simply executed locally at
any database and do not require any distributed
synchronization among databases. To submit
transactions, clients first have to find the cur-
rent primary database, which they do by polling
databases. If the first database contacted turns
out to be the current primary, it establishes a con-
nection with the client; otherwise it returns to the
client the identity (i.e., group id and database id)
of the database it believes to be the current pri-
mary. Assuming that the system eventually stabi-
lizes, that is, failures, disasters, and suspicions do
not keep happening indefinitely, clients eventually
find the current primary database.

The primary receives SQL requests from the
clients and executes them concurrently, but under
the constraints of (local) strict two-phase locking.
When the primary receives a commit request for
a transaction from some client, the primary uses
HABcast to broadcast the SQL statements for the
transaction to all the backups. Upon 1-SAFE de-
livering such a message, each backup executes the
transaction against its database, following the de-
livery order. Update transactions at the backups
are executed sequentially, according to the order
they are delivered. Since this delivered order cor-
responds to the serializable order in the primary,
all databases order conflicting update transactions
in the same order. Thus, the primary database
can be non-deterministic and execute transactions
concurrently since we can repeat the same non-
deterministic choices at the backups. Even though
backups have to process update transactions se-
quentially, they can do it concurrently with the
execution of local read-only transactions. Notice
that performance at the primary is not hurt by
the backups because the primary can reply back
to the client right after delivering a 1-SAFE or 2-
SAFE message (depending on the level of durabil-
ity required by the transaction) and receiving a
reply from its local database acknowledging the
commit of the transaction.

Failures, disasters, and suspicions. Conti-
nental Pronto implements primary-backup on top
of failure and disaster detection mechanisms. We
use failure detection to elect a new primary within
the same group when the current primary is sus-
pected, and we use disaster detection to elect a

Algorithm 1 (cont.) Database d? in group G,

29: To commit a transaction:

30: when Deliver(1-SAFE, d¥, Gy, e;, ta, client(ta),
job(ta),level(ts), sql-seq) do
31:  if Ity # tq,s.t. state(ty) = COMMITTED and

job(ts) = job(t,) then

32: if level(t,) = 1-SAFE then

33: send (—, COMMITTED) to client(t,)

34: else

35: if e; < e; then

36: execute abort(ts)

37: wait for response(t,, result)

38: state(ta) < ABORTED

39: else

40: if d7 # prmy_db; or G, #prmy_grp; then

41: for each (t,, sql-req) in sql-seq do

42: execute sqgl-req

43: wait for response(t,, result)

44: execute commit(t,)

45: wait for response(t,, result)

46: state(t,) ¢ COMMITTED

4T: if (state(t.) =ABORTED or level(t,) =1-SAFE)
and di = d} and G, = G, then

48: send (tq, state(t,)) to client(ts)

49: when Deliver(2-SAFE, d¥, Gy, e, ta, client(ta),
job(ts),level(ty), sql-seq) do
50:  if 3¢, s.t. (state(ty) = COMMITTED and
job(ty) = job(t,)) and level(t,) = 2-SAFE and
di =d} and G, = G, then
51: send (tq, COMMITTED) to client(ts)

52: To request primary server/group change:

53: when prmy_db; € D; and G, = prmy_grp; do
54:  Broadcast(e;, “CHANGE SERVER”)

55: when prmy_grp; € DD do

56:  Broadcast(prmy_grp;, “CHANGE GROUP”)

57: To change primary server/group:

58: when(Deliver(1-SAFE, e;, “CHANGE SERVER” )and
e;j = e;) or (Deliver(1-SAFE, prmy_grp;, “CHANGE
GROUP”) and prmy_grp; = prmy_grp;) do
59: if prmy_db; = dj and G, = prmy_grp; then

60: for each t, s.t. state(t,) = EXECUTING do
61: execute abort(t,)

62: wait for response(t,, result)

63: state(t,) <~ ABORTED

64: send (t,, ABORTED) to client(t,)

65: ei+e; +1

66:  if Delivered (1-SAFE, “CHANGE GROUP”) then
67: prmy_grp; < prmy_grp; + 1

68:  prmy-db; + e; mod sizeof(group prmy_grp;)




new primary in a different group when the current
primary’s group has suffered a disaster. In both
cases, we use the HABcast abstraction, introduced
in Section 2.3, to ensure that all databases agree
on the sequence of primaries; but the databases
only agree on the sequence of primaries, not on the
actual real time at which a database is appointed
primary. This looser notion of agreement allows us
to implement a primary-backup mechanism with-
out assuming a synchronous model and without
making timing assumptions within groups.

Due to the asynchrony of message transmis-
sions, however, more than one primary in the
same group may co-exist during certain periods of
time. To handle situations of multiple primaries
executing transactions concurrently, we rely on
a certification scheme similar to the one used in
the Pronto protocol [13]. With such a scheme,
the execution evolves as a sequence of epochs.
All databases start their execution in the first
epoch, and for any given epoch, there exists a pre-
assigned primary database. Whenever a database
suspects the current primary to have crashed, it
uses HABcast to request an epoch change, and,
consequently, a change in the primary. Every mes-
sage broadcast carrying a transaction, a failure
suspicion, or a disaster suspicion also contains the
epoch in which the message was broadcast. Upon
delivering a message, the action taken depends on
its epoch.

e A transaction delivered in the epoch in
which it was broadcast (and thus, executed)
is committed; a transaction delivered in a
different epoch than the one in which it was
broadcast is aborted.

e A suspicion delivered in the same epoch in
which it was broadcast makes the database
pass to the next epoch; a suspicion delivered
in a later epoch than the one in which it was
broadcast is ignored.

Since all databases deliver messages in the same
order, they all agree on which transactions should
be committed and which ones should be aborted.
A client that has its transaction aborted because
it used an outdated primary re-executes its trans-
actional job using the current primary.

5 Performance Assessment
5.1 Implementing HABcast

The performance of the broadcast abstraction
has a major impact on the performance of Con-
tinental Pronto, and so, we discuss here how to
implement it. HABcast [6] is implemented as a
composition of uniform atomic broadcast proto-
cols running independently of each other in each
data center. As for Continental Pronto, there is a
primary process, and the group to which the pri-
mary belongs is denoted the primary group. The
basic communication pattern in HABcast is the
following. To broadcast a message m, a process
in the primary group first executes a local atomic
broadcast within its group. The primary group
has a coordinator process, and when this coor-
dinator delivers the local broadcast message, it
executes (1-SAFE,m) and sends m to a single pro-
cess in each backup group. When a process p in a
backup group receives m, it atomically broadcasts
m within that group. When p delivers m as part
of the local atomic broadcast mechanism, it sends
an acknowledgement to the coordinator in the pri-
mary group. Upon receiving this acknowledege-
ment, the coordinator reliably broadcasts the ac-
knowledgement to the rest of the primary group
and then executes (2-SAFE,m). A detailed dis-
cussion about how HABcast handles failures, sus-
picions, and disasters is out of the scope of this
paper, and can be found in [6].

5.2 Analytical Evaluation

We compare Continental Pronto to two algo-
rithms that deal with data center disasters: 1-
safe and 2-safe [7]. Although [7] considers a sin-
gle backup only, we have specified the complexity
for n — 1 backups. Using the 1-safe configura-
tion, the primary can commit a transaction before
exchanging messages with the backups, however,
the backups may miss some transactions if the
primary crashes. This is similar to Continental
Pronto’s 1-safe durability in case of data center
disasters. To commit a transaction using the 2-
safe configuration, the primary has to wait for a
round-trip message with each backup. If the pri-
mary crashes, 2-safe guarantees that the backups
have all transactions committed by the primary.
This is what Continental Pronto guarantees with
2-safe durability in case of data center disasters.



Our comparison assumes best case scenarios,
without failures and suspicions. This means,
for example, that when considering Continental
Pronto, we assume that the primary process in
HABcast coincides with the primary database
process in Continental Pronto. We use the num-
ber of messages and the latency as metrics for
our comparison. For the latency analysis, we dis-
tinguish between §;, the transmission delay along
local-area network links, and §,,, the transmission
delay along wide-area network links; we assume
0w > 0;. We also specify the number of messages
injected into the network per message broadcast,
distinguishing between messages injected into a
local-area network and messages injected into a
wide-area network. If a process in some data cen-
ter sends a message to a process in another data
center, we count the communication as a single
wide-area message and no local-area messages. If
a process sends a message to another process in
the same data center, we count the communica-
tion as a single local-area message only. We as-
sume, as a simplification, that all n groups have
the same number k of processes.

Table 1 presents the results of our comparison.
The 1-safe protocol only involves a single wide-
area message to each backup and no latency be-
cause the primary does not wait for the backups
to commit. The latency for Continental Pronto
is based on the latency of HABcast when deliv-
ering a message of the type (1-SAFE,—), which
is determined by the latency of the local Atomic
Broadcast within the primary group. Using the
Atomic Broadcast algorithm presented in [3] with
some optimizations [16], this latency is 24;. Al-
though the protocol does not wait for the backups
to deliver messages, the primary data center still
communicates with all the backup data centers
(asynchronously). The primary in the primary
data center sends a round-trip wide-area message
to a single process in each backup data center.
This communication pattern amounts to 2(n — 1)
wide-area messages. Each data center executes a
local Atomic Broadcast protocol, which requires
3(k — 1) local-area messages. Moreover, there are
n such executions, giving a total of 3n(k—1) local-
area messages. In addition, the primary in the
primary data center executes a reliable broadcast,
which amounts to k — 1 local-area messages. All
in all, running Continental Pronto in 1-safe con-
figuration gives rise to (kK — 1)(3n + 1) local-area
messages.

The latency for a 2-safe protocol is 24, be-
cause the primary synchronously communicates
with the backups. A conventional 2-safe protocol
gives rise to wide-area messages only—there is no
notion of local-area replication in a conventional
2-safe protocol. If we run Continental Pronto in
2-safe mode, its latency is based on the latency of
HABcast when delivering a message of the type
(2-sAFE,—). This latency is composed of a lo-
cal Atomic Broadcast in the Primary group and
in each backup group (these occur concurrently),
and a round-trip communication with each backup
group (these are also concurrent). Thus, the total
latency for Continental Pronto in 2-safe mode is
46;+26,. The number of messages is the same for
Continental Pronto in 1-safe and 2-safe mode—
only the latency is different.

Protocol | Latency WAN LAN
1-safe 0 (n—1) 0

CP 1-safe 268 2(n—1) | (k—1)(3n+1)
2-safe 26, 2(n—1) 0

CP 2-safe | 461 +26, | 2(n—1) | (k—1)(3n+1)

Table 1: Cost of protocols

5.3 Simulation-Based Evaluation

Our analytical evaluation of HABcast does not
consider local messages used within the groups by
the failure detection mechanism, and the impact
of having to share common resources, such as com-
munication links, on the latency of the protocol.
In order to take these factors into account, we
have built a simulation model and conducted sev-
eral experiments. Our simulation model considers
n groups of processes, and each group has its own
local-area network. Groups communicate with
each other using dedicated links, however only one
link is used between any two groups. Transmission
of wide-area messages also impacts the transmis-
sion of a local-area message in the sender’s group
and in the receiver’s group, to model the local
communication with the routers in each group.
For local-area messages, we assume a transmis-
sion latency randomly generated between 2 and 3
milliseconds, and for wide-area messages between
100 and 150 milliseconds. Messages are all broad-
cast by the same process at maximum rate, that
is, some process in the primary group broadcasts a
message right after delivering (2-SAFE, —) for the
previous message.



Figures 2 and 3 depict some of the results of our
experiments. In both cases, enough experiments
were conducted to build confidence intervals of
98%. The confidence intervals are not shown in
the graphs since they never overlap. Figure 2 com-
pares the times to deliver messages of the type
(1-SAFE, —) and (2-SAFE,—) in a system with 3
groups. Not surprisingly, most of the overhead to
deliver a message of type (2-SAFE, —) is related to
wide-area messages.
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Figure 2: 1-safe and 2-safe durability
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Figure 3: Comparing HABcast to 2-safe

Figure 3 compares the time to deliver messages
of the type (2-SAFE, —) with the time of the 2-safe
algorithm, and configurations with 2 and 3 groups.
The first observation is that for groups with 3 pro-
cesses, for systems with 2 and 3 groups, there is
no big difference between Continental Pronto and
the 2-safe algorithm. The wide-area latency for
Continental Pronto in 2-safe mode and for a tra-
ditional 2-safe protocol is the same, and this wide-
area latency is the main component of the total

latency. In terms of resilience, however, one pro-
cess crash in the 2-safe algorithm requires a data
center failover, while in Continental Pronto this
requires a local reconfiguration.

6 Related Work

Due to space constraints, we only provide a
brief summary of related work. In [5], we give
a more detailed description of these related ap-
proaches. Existing approaches address either dis-
aster recovery or high availability, but typically
not both. We start out by comparing Continen-
tal Pronto to existing work on disaster recovery.
Then we compare Continental Pronto to replica-
tion algorithms that provide high availability.

The algorithms in [11] seek to reduce the re-
source consumption of 1-safe algorithms by par-
allelizing the processing of log entries at backup
sites. The algorithms in [14] provide 1-safe se-
mantics for a system where both the primary and
backup sites contain multiple database instances,
each with their own partition of the database. As
an extension, [10] allows the same site to contain
both primary and backup partitions. The algo-
rithms in [9] do not consider such mixed sites.
Instead, the algorithms provide 2-safe semantics
with early release of locks at the primary (using
the lazy commit optimization in [7]). The notion
of 0-safe is introduced in [4] to allow for multiple
primaries. The basic assumption to avoid incon-
sistency is that all transactions commute.

There are several differences between these ex-
isting approaches and Continental Pronto. First,
Continental Pronto relies on transaction shipping
rather than log shipping. This means that we can
support heterogeneous databases as long as they
support a standard interface, such as JDBC—of
course, the price for this flexibility is a degradation
in the performance relative to log shipment. Sec-
ond, we can deploy Continental Pronto without
modification of the database internals—we only
rely on the standard database semantics. Third,
Continental Pronto provides disaster resilience for
systems where the primary and the backup sites
contain multiple copies of the same data item.
That is, the failure of a single database can be
handled locally, within a single data center.

In terms of replication for high availability,
one approach is to use a parallel database sys-
tem, such as OPS [12] or XPS [17]. These par-



allel database systems typically require special
hardware for disk sharing between the various in-
stances of the database. A number of systems pro-
vide local-area replication without special hard-
ware (e.g., [1, 15, 13]).

These protocols provide high availability only:
if we ran these protocols in a multi-data-center en-
vironment, the cost would be prohibitive in terms
of wide-area messages. For example, if we ran the
Pronto protocol [13] in the multi-data center set-
ting, the number of wide-area messages would be
proportional to the total number of databases in
the system whereas with Continental Pronto, the
number of wide-area messages is proportional to
the number of data centers.

7 Conclusion

Continental Pronto provides a unified approach
to wide-area and local-area data replication. One
of the keys to cover this space with a relatively
simple protocol is the formulation of an underly-
ing communication abstraction, called HABcast.
The agreement properties of HABcast give a nice
foundation for programming the various durabil-
ity levels (1-safe and 2-safe) for transactions. Fur-
thermore, the ordering guarantees of HABcast al-
lows us to factor out the complex ordering and de-
pendency issues for transactions that result from
combining local-area and wide-area replication.

The price for the relative simplicity of Conti-
nental Pronto is the increased “cost” of perform-
ing data replication. Where traditional disaster-
recovery protocols rely on low-level log shipping,
Continental Pronto uses higher-level, and less ef-
ficient, transaction shipping.
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