
Tracking Human-Centric Controlled Experiments with Biscuit

Fernando Olivero1, Michele Lanza1, Marco D’Ambros1, Romain Robbes2

1: REVEAL @ Faculty of Informatics, U. of Lugano, 2: PLEIAD @ DCC - University of Chile

Abstract
Software is created by humans, for humans. For this rea-
son, software engineering is—above all—a human activity.
Acknowledging this fact, many researchers perform con-
trolled experiments with human subjects to evaluate the per-
formance and usability of novel approaches and software en-
gineering tools. However, the intrinsically non-deterministic
nature of humans introduces a number of threats to the valid-
ity of such experiments. One of them concerns how to record
information without influencing the behavior of the subjects
involved. Another one relates to providing means to assure
the correctness of the gathered data, for further pristine anal-
yses and replication.

We present Biscuit, a tool that silently records relevant
pieces of information regarding an experiment performed
with human subjects. We present the main features and ben-
efits of Biscuit by showcasing a controlled experiment of
Gaucho, a next generation IDE. Based on our experience, we
discuss the potential of Biscuit and outline future research in
this direction.

1. Introduction
If software engineering is above all a human activity, then
taking the human aspect out of the loop—when it comes
to evaluating software engineering approaches—would be
definitely wrong. Consequently, these past years have seen
a steady increase of evaluations based on controlled exper-
iments performed with human subjects; an example is the
one of Cornelissen et al. [1]. Such experiments are prone to
a large number of pitfalls, due to the one and only uncontrol-
lable element of any controlled experiment involving human
subjects: humans. Humans have individual talents, skills, be-
haviors, and quirks. In any experiment humans behave in a
non-deterministic way, which introduces various threats to
the validity of any experiment of this kind.

Copyright is held by the author/owner(s). This paper was published in the Proceedings
of the Workshop on Evaluation and Usability of Programming Languages and Tools
(PLATEAU) at the ACM Onward! and SPLASH Conferences. October, 2012. Tucson,
Arizona, USA

We recently performed an extensive controlled experi-
ment [2] ourselves and, apart from the vast amount of en-
ergy and time such an endeavor entails—whose sensibility
is not under discussion here—we noticed during our experi-
ment a number of pitfalls that we want to alleviate with the
work presented in this paper. The pitfalls in question regard
an issue that might be seen as a corollary to Heisenberg’s
uncertainty principle: How is the information that one wants
to record actually being recorded, and does the fact that one
records information in an intrusive way influence or modify
the behavior of subjects? If so, how can this be minimized?

In this paper, we present Biscuit 1, a toolset to:

1. specify tasks to be undertaken by the subjects of the
experiment

2. precisely time the subjects and record their complete
behavior as they perform the tasks,

3. store the answers the subjects give upon task completion,

4. provide data that is easy to process further, and send the
data back to the experimenters.

We do not address other important issues pertinent to
controlled experiment involving humans, e.g., the choice
of participants, controlled variables, tasks, etc. These and
others are all important questions which go beyond the scope
of the present paper. We focus on a seemingly smaller set of
issues, which however can and does contribute to a loss of
precision or even a falsification of the recorded data.

2. The Crux of Human-centric Experiments
There are diverse possibilities to record information in a
controlled experiment, where a usual scenario is that a set
of subjects are divided into two groups, the control group
and the experimental group. Subjects in the former group are
given some baseline setting, while the subjects of the latter
group are given the tool to be evaluated. The goal is then to
assess whether the experimental group can perform a set of
tasks better, faster, etc. as opposed to the control group.

A literature survey2 ([1, 3]) reveals commonly adopted
approaches to tackle the four issues we are focusing on in
this paper, with which every experimenter is confronted:

1 Available at http://www.inf.usi.ch/phd/olivero/biscuit
2 We only cite a few examples, see [2] for a discussion of related work.

http://www.inf.usi.ch/phd/olivero/biscuit


1) Give the subjects tasks to perform and/or questions to
answer, and the possibility to provide answers/findings in
some form. The subjects know what is expected from them;
this can either come as a set of questions or a set of tasks.
After performing the tasks the subjects then provide some
form of feedback about what they have done, i.e., they need
to answer questions. The experimenter’s role in this situa-
tion is then, to obtain data about the correctness (i.e., was
a task fulfilled or not/only partially) and the time taken by
the subjects to perform a task. In the large majority of cases,
experimenters opt for questionnaires, (often in the form of
multiple choice questions or free-form text questions) to the
subjects who fill them out during the experiment. Question-
naires can either be on paper or also in electronic form (an
often adopted solution is to use survey websites).
2) Keep track of the time taken by each subject on each task.
How can one reliably record the time it took for a subject to
perform a task? One possibility is to have the subject write
down the time (as part of the questionnaire); this introduces
the risk of subjects writing down wrong information. An-
other possibility is for the experimenter to record the time
information, which makes it hard, if not impossible, to per-
form an experiment with multiple subjects at the same time
or a remote experiment—without removing measurement is-
sues due to human fallibility.
3) Record what the subjects do while they perform tasks to
try to find answers. To record what subjects do, the often
adopted solutions are Think-aloud protocols and/or filming
and Screencasts and/or audio-recording.

Think-aloud protocols involve experiment participants
thinking aloud as they are performing a set of specified tasks.
Users are asked to say whatever they are looking at, thinking,
doing, and feeling, as they go about their task. This enables
observers to see first-hand the process of task completion
(rather than only its final product). Observers at such a test
are asked to objectively take notes of everything that users
say, without attempting to interpret their actions and words.
Test sessions are often audio and video taped so that devel-
opers can go back and refer to what participants did, and
how they reacted. The purpose of this method is to make
explicit what is implicitly present in subjects who are able
to perform a specific task.

A screencast is a digital recording of computer screen
output, also known as a video screen capture, often contain-
ing audio narration. Experimenters can use them to record
the full interaction of the subjects with the tools they used.
4) Process the previously recorded data to extract additional
information, and allow the experimenters to gather the data
easily. An additional problem is that the data recorded using
such approaches needs to be post-processed since it comes as
a digital movie/audio recording. The post-processing, e.g.,
transcribing what happened, can be lengthy and imprecise—
especially when the number of subjects is high—due to the
lack of formalism in natural language and human behavior.

Raising the level of abstraction of the data would allow for
easier and more automated processing. Related to this issue,
gathering the data in itself can be a challenge—either be-
cause of manual processing of hand-written questionnaires,
or because it comes from multiple sources (e.g. question-
naires, timing data, and other recorded data).

Summing up. Due to issues related to timing, data pro-
cessing, and mostly inaccurate tracking of what happens dur-
ing the experiment, the risk is that the data that is being col-
lected during an experiment is distorted or even wrong. To
mitigate such risks we devised Biscuit, a tool infrastructure
for non-intrusive and precise tracking of data related to ex-
periments with human subjects, presented next.

3. Biscuit: Precise Data Tracking
Biscuit supports performing controlled experiments, by
recording relevant pieces of information regarding an ex-
periment performed with human subjects. At the moment, it
is geared towards experiments evaluating development tools.

To address the first issue stated in the previous section,
Biscuit can set up an experiment made up of tasks which
in turn, consist in a description and goals that need to be
accomplished by the subjects. The format of answers to the
goals range from multiple choice questions and free form
text entries, to modifying the underlying system entities—
such as adding/removing classes/methods until automated
tests pass. Using Biscuit, the experimenter can automatically
generate a user interface for any experiment; it presents
the experiment to the subjects and guides them through the
tasks until completion, storing the answers and durations of
each task transparently. This addresses the first two issues;
namely giving the subjects tasks to perform or questions to
answer; and registering the answers and completion times.

To address the third issue—i.e., recording—prior to run-
ning each task, Biscuit installs a spy that records every user
interaction: from simple mouse move events, to more com-
plex interactions such as performing changes to the code
base, or providing answers to the experiment goals. The
spy is built on top of a system monitoring tool called Spy-
ware [4], enhanced with a complete instrumentation of the
Event-Command pattern. The recording enables one to keep
track of every user interaction in the form of recorded events
that trigger commands, thus eliminating a great level of
uncertainty from the correctness of the subjects answers,
due to the faithful replicability of each experiment run. The
events recorded by Biscuit correspond to actual user actions
(source code navigation and modifications), in contrast to
video recordings that require significant further interpreta-
tion, thus addressing the fourth issue: the event trace is open
to automated analyses and can be replicated.

To address the fourth and final issue, upon completing an
experiment the subject is asked to send (via email) an auto-
matically created zipped file containing all the recorded data
to the experimenters. This file contains every user interac-



Figure 1. A Biscuit task list and a running task example, overlaid on top of the Gaucho IDE

tion recorded by the spy during the experiment run, together
with the answers and solutions to each task, and additional
meta-data such as the participant name or identifier, and the
total completion time. The process is straightforward both
from the subject’s and the experimenter’s point of view.

First test run. We conducted a preliminary evaluation of
Biscuit, by setting up a controlled experiment to assess the

validity of the metaphor in use by Gaucho—a development
environment for software based on direct manipulation [5].

The goal of the experiment was to compare Gaucho with
a standard Smalltalk IDE, the Pharo development environ-
ment (http://pharo-project.org) with respect to per-
forming common development tasks, such as creating, navi-
gating, refactoring, and understanding object-oriented code.

http://pharo-project.org


A secondary goal was to analyze how developers interact
with the respective tools, to detect usability issues and pro-
vide insights into further improvements. We presented the
experiment and our findings in [6], which was fully instru-
mented using Biscuit.

Figure 1 depicts the experiment description that is shown
once the subject has completed the pre-test questionnaire
and entered basic data, and an actual experimental run. The
top part depicts the list of tasks to be done (two completed,
two skipped), while the bottom part shows an actual task
being performed. The screenshot illustrates how the Biscuit
task runner records and informs users of the passage of time,
presents the tasks, and collects the answers from the sub-
jects. On the bottom corner, we see the task widget with the
answer form; the rest of the screen is occupied by the tool be-
ing evaluated, in this case Gaucho. Figure 2 depicts the post-
experiment questionnaire and the final widget presented to
the subject.

Figure 3 depicts the contents of the files that constitute
the output of an experiment run. Biscuit records all the data
pertinent to the subjects activity, ranging from meta-data
such as the level of expertise of the subjects, to low level
user interface actions, such as mouse clicks and keystrokes.
We automatically analyzed the results of the experiment by
extracting the subjects’ activity from these output files.

Figure 2. Biscuit output:

Related Work. To our knowledge, the only other toolset
dedicated to recording fine-grained activity in controlled ex-
periments is Emperior [7], an IDE for the Java and Groovy
programming languages that records programmer naviga-

tion at the file level (Biscuit records it at the method level),
records compilations of the programs, unit test runs, and
periodically takes snapshots of the source code (Biscuit
tracks the changes themselves); the snapshots generate an
extremely large amount of redundant data. A new instance
of Emperior needs to be launched for each task.

There are other tools that record usage data, such as
HackyStat [8]. It collects navigation data, metrics data, and
test runs. HackyStat has not been used to record controlled
experiments. Similarly, Mylyn [9] records navigation and
edit information as part of its activity; this data was used
to evaluate Mylyn in a field study, not an experiment. Com-
pared to these tools, Biscuit records more kinds of data (such
as actual changes, not edit activity), and allows the definition
of actual experimental tasks.

4. Reflections
Performing controlled experiments with human subjects is
a difficult task, subject to many threats. Biscuit is an ex-
perimental toolkit aimed at reducing some of the threats re-
lated to recording and gathering experimental data. Biscuit
supports the recording of answers and timing information
necessary for quantitative experiments; it also collects finer-
grained data—user interactions—that, on the one hand, is
useful for a qualitative analysis of the data and, on the other
hand, makes the experiments fully replicable.

We raise the question of whether tools such as Biscuit
can improve the quality of the process by which we currently
perform controlled experiments; and more importantly, if the
availability of more precise and reliable data can eliminate
some of the numerous threats present in controlled experi-
ments, which are manually conducted by fallible humans.

Contrasting Gaucho’s controlled experiment [6] (con-
ducted using Biscuit) and our previous experiment [2] (con-
ducted in the traditional manner) we noticed that:

• by relieving ourselves from bookeeping tasks, we re-
moved ourselves as threats to validity;

• we were able to better observe the subjects during the
experimental run, gathering in the process much more
qualitative data about Gaucho’s usability;

• data post-processing was greatly simplified;
• since the Gaucho experiment featured several very short

tasks (some with a duration under a minute), we doubt
that conducting the same experiment would have been
possible in a “traditional” (i.e., manual) way.

Conducting controlled experiments with human subjects
to evaluate software engineering tools and approaches has
become a necessity. Such experiments come with many
threats to validity because of the humans involved; we be-
lieve Biscuit helps to remove some of the threats that regard
the operation of controlled experiments.



Description;GauchoExperiment;Luis;Pharo
Duration;16 December 2010 5:35:11 pm;0:00:53:00
Participant;Luis
Age;25
Nationality;Bolivia
Gender;male
Affiliation;DCC
Job Position;Grand Student
ObjectOriented;level;begginer;experience;2
Smalltalk;level;begginer;experience;1
Pharo;level;begginer;experience;1
Performed tasks;15

CompletedTask;T1Mapping concepts to classes;16 December 2010 5:35:21 pm;
0:00:02:48;TaskSingleInputGoalRun;TaskInput;
class name;LRotationNode;Result;Shape

CompletedTask;T2Understanding the class structure;16 December 2010 5:38:22 pm;
0:00:02:48;MultipleChoice;description;
Indicate the correct names of all the instance variables of the class 
LLight.;EnDDescriptioN;ExpectedResult;2;4
Choice;label;1;description;ambient, color, location, on, specular;EnDDescriptionN;false
Choice;label;2;description;diffuse, location, on, specular;EnDDescriptionN;true
Choice;label;3;description;ambient, diffuse, location, on, specular;EnDDescriptionN;false
Choice;label;4;description;material, direction, specular, on;EnDDescriptionN;false

CompletedTask;T3.1Traversing the class hierarchy;16 December 2010 5:41:16 pm;
0:00:01:13;TaskSingleInputGoalRun;TaskInput;class name;LNode;Result;Object

Name;T1Mapping concepts to classes Session
Developer;OscarEACallau
Duration;17 December 2010 10:12:37 am;
0:00:01:40
Events;112
MRMouseClickEvent; runIcon; click; 282849; 
521@215

MRGainedMouseFocusEvent; SystemGlobals; 
mouseEnter; 283282; 436@215

MRMouseLostFocusEvent; SystemGlobals; 
mouseLeave; 284783; 447@282

MRGainedMouseFocusEvent; PampasWindow-
searchIcon; mouseEnter; 287908; 74@98

#('2010-12-16T15:23:57+00:00' 'EricTanter' 
#(#cref #LStackLayout 'false') #classModified: 
#(#definition: 'LumiereLayout subclass: 
#LStackLayout

instanceVariableNames: ''translations''
classVariableNames: ''''
poolDictionaries: ''''
category: ''Lumiere-Modeling''' #category: 

'''Lumiere-Modeling''' #superclass: 
#LumiereLayout #instvars: #('translations') 
#classvars: #()) 'LumiereLayout subclass: 
#LStackLayout

instanceVariableNames: ''translations''
classVariableNames: ''''
poolDictionaries: ''''
category: ''Lumiere-Modeling''')

EXPERIMENT DATA

UI ACTIONS SYSTEM - SPYWARE ACTIONS

Figure 3. Biscuit output: reliable and precise data

Acknowledgments
Olivero is supported by the Swiss Science foundation (SNF
Project No. 129496, “GSync”). We thank the European
Smalltalk User Group (www.esug.org), for the sponsoring.

References
[1] B. Cornelissen, A. Zaidman, and A. van Deursen, “A controlled

experiment for program comprehension through trace visualiza-
tion,” IEEE Transactions on Software Engineering, vol. 37,
no. 3, 2011.

[2] R. Wettel, M. Lanza, and R. Robbes, “Software systems as
cities: A controlled experiment,” in Proceedings of ICSE 2011.
ACM Press, 2011, pp. 551 – 560.

[3] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in
collocated software development teams,” in Proceedings of
ICSE 2007. IEEE Press, 2007, pp. 344–353.

[4] R. Robbes and M. Lanza, “Spyware: A change-aware develop-
ment toolset,” in Proceedings of ICSE 2008. ACM Press, 2008,
pp. 847–850.

[5] F. Olivero, M. Lanza, and M. Lungu, “Gaucho: From inte-
grated development environments to direct manipulation en-
vironments,” in Proceedings of 1st Intl. Workshop on Flexible
Modeling Tools, 2010.

[6] F. Olivero, M. Lanza, M. D’Ambros, and R. Robbes, “Enabling
program comprehension through a visual object-focused devel-
opment environment,” in Proceedings of VL/HCC 2011. IEEE
Press, 2011.

[7] M. Steinberg, “What is the impact of static type systems
on maintenance tasks? an empirical study of differences
in debugging time using statically and dynamically typed
languages,” Master Thesis, University of Duisburg-Essen, 2011.

[8] P. M. Johnson, H. Kou, J. Agustin, C. Chan, C. A. Moore,
J. Miglani, S. Zhen, and W. E. J. Doane, “Beyond the personal
software process: Metrics collection and analysis for the
differently disciplined,” in Proceedings of ICSE 2003, 2003,
pp. 641–646.

[9] M. Kersten and G. Murphy, “Using task context to improve
programmer productivity,” in Proceedings of FSE 2006 (16th
SIGSOFT Symposium on the Foundations of Software Engineer-
ing). ACM Press, 2006, pp. 1–11.

www.esug.org

	Introduction
	The Crux of Human-centric Experiments
	Biscuit: Precise Data Tracking
	Reflections

