
Università
della
Svizzera
italiana

Software
Institute

CODI
A Conversation Disentanglement Microservice

Edoardo Riggio

June 2022

Supervised by
Prof. Dr. Michele Lanza

Co-Supervised by
Marco Raglianti

BACHELOR PROJECT

ii

Abstract

Instant Messaging Applications (IMAs) – such as Discord, Gitter, and Slack – are becoming popular means
of communication. However, IMAs lack features to disambiguate and identify conversations. A conversa-
tion is a sequence of time-stamped messages representing an interactive discussion between multiple peo-
ple. A message is said to be part of a conversation if it answers a previously posed question or discusses
a similar topic as other messages. We implemented an accessible and user-friendly REST microservice
that can automate the disambiguation of a set of messages to form conversations by leveraging machine
learning algorithms.

iii

Contents

Abstract ii

1 Introduction 2
1.1 Contributions . 2
1.2 Document Structure . 3

2 State of the Art 4
2.1 Instant Messaging . 4

2.1.1 Brief History . 4
2.2 Conversation Disentanglement . 6
2.3 Summary and Outlook . 7

3 CODI Implementation 8
3.1 Architecture . 8
3.2 Backend . 9

3.2.1 REST API . 11
3.2.2 Disentangler . 11

Feature Extraction . 13
Max-Entropy Classifier . 14
Correlation Clustering . 14

3.3 Frontend . 15
3.3.1 Homepage . 15
3.3.2 Validation Statistics . 16
3.3.3 Prediction Statistics . 17
3.3.4 Dataset Annotation . 18

4 Result Analysis 19
4.1 Evaluation Methods . 19

4.1.1 Max Entropy . 19
4.1.2 Correlation Clustering . 19

4.2 Disentanglement Performance . 20
4.2.1 Original Datasets . 20
4.2.2 Custom Dataset . 20

4.3 Disentanglement Quality . 21
4.4 Time Performance . 22
4.5 Summary and Outlook . 23

5 Conclusion and Future Work 24
5.1 Future Work . 24
5.2 Concluding Remarks . 24

2

Chapter 1

Introduction

Instant Messaging Applications have evolved into one of the most revolutionary means of communica-
tion, gradually supplanting conventional asynchronous media (e.g., email). People thousands of kilometers
apart can communicate in real-time thanks to these services. Thus, some instant messaging apps, such as
Slack and Discord, might have extremely high throughput. This means that hundreds of messages could
be transmitted every second by people all around the world. High throughput in large chats may cause
numerous conversations to overlap and be separated by interleaving messages.

Researchers have found algorithms that could mimic what human beings do to separate conversations
[1–6]. Of these algorithms, we decided to implement the one proposed by Elsner and Charniak [1, 3] and
later extended by Chatterjee et al. [2]. This is a two-step algorithm in which pairs of messages and their
features are first fed to a max-entropy classifier – which determines the relatedness of messages. The output
of this classifier is given as input, together with the list of all the messages, to the second step, the correlation
clustering algorithm which will group messages based on the previously found relations into conversations.

With CODI, we attempted to achieve ease of use. We aimed to make it easy for researchers to annotate
and perform conversation disentanglement on given datasets. CODI is a simple web application with a
client module that allows users to drag and drop datasets to perform training, validation, or prediction op-
erations, as well as graphically pick which feature-sets to employ in the disentanglement process. Users
can also directly access the REST API endpoints, which can be invoked using scripts, for example. More-
over, we have created a view for dataset annotation. This was done so that even researchers with limited
technical knowledge could readily manually label the dataset that would be given to the disentangler.

1.1 Contributions

There are several contributions to this project. Below we will identify all of them.

• Replication Contribution
This consisted in reproducing the algorithm developed by Elsner and Charniak [1, 3]. This two-step
disentangling approach, which includes both the max-entropy and correlation clustering algorithms, is
used in CODI’s backend.

• Engineering Contribution
This is the development of CODI itself. CODI can accept input files containing raw or structured
dumps of Discord and Slack chats, with or without conversation annotation. The input dataset is
pre-processed before being sent to the two-step disentanglement algorithm. Once the algorithm has
generated the conversations, they are displayed to the user along with statistics on the disentangle-
ment’s effectiveness, such as accuracy, precision, recall, and F1 score for the max-entropy algorithm; and
micro-averaged F1 score for the correlation clustering algorithm.

1.2. Document Structure 3

• Dataset Contribution
In addition to the datasets made public by Elsner and Charniak [1, 3] and by Chatterjee et. al [2], we
have annotated our own dataset. This dataset comprises 294 messages taken from a Pharo Discord
server. Two people manually annotated the messages, which were then merged to form the final
annotated dataset. We have used this dataset to evaluate our implementation of the disentanglement
algorithm on a new ground truth.

• Validation Contribution
In the final phase of the implementation of CODI, we used some annotated datasets to verify our
implementation’s correctness and understand its limitations. In addition to two datasets offered by
Elsner and Charniak and Chatterjee et al., we also use our custom dataset in the evaluation. The
two original datasets were mainly used to verify the correctness of the implementation. The results
obtained were compared with the ones obtained by the original authors. The third dataset, the custom
one, was used to understand the limitations of such an algorithm.

1.2 Document Structure

This document has been divided into several different chapters. Each chapter describes one or more of the
steps that allowed us to complete this project. More specifically, we have four chapters.

• State of the Art
In this chapter, we talk about the research done in this field prior to our project. We have also inserted
a section dedicated to the history of instant messaging and its applications.

• CODI Implementation
This chapter explains in detail how CODI works. It talks about how we structured CODI and what a
user can do to disentangle their datasets.

• Result Analysis
In this chapter, we analyze the experiments we performed on CODI with several different datasets
and report the results of such experiments.

• Conclusion and Future Work
In this last chapter, we have a brief concluding summary of the project and suggestions on how to
further improve CODI.

4

Chapter 2

State of the Art

2.1 Instant Messaging

Instant messaging is a set of protocols for communication between two or more people over the Internet.
This technology differs from others – such as email – because conversations happen in real-time rather than
asynchronously, hence the word instant.

2.1.1 Brief History

The first instant messaging platform dates back to 1973. Its name was Talkomatic (Figure 2.1a), and it al-
lowed five people to have each a section of the screen – each user could write only five lines of text and
chat in real-time. Differently from modern-day instant messaging applications, Talkomatic was a real-time
text service. This means the messages were broadcasted letter-by-letter as the users typed them in. This
type of technology characterized most of the early real-time messaging services.

In the early 1990s, however, a company named Quantum Link – which later became America On-Line –
developed and released an online service for the Commodore 64 in which concurrently connected users
could exchange messages in real-time. This concept was further refined and integrated by America Online
in one of the first and most important mass-distributed instant messaging platforms, AOL Instant Messen-
ger (AIM) 1 (Figure 2.1c). This platform was also one of the first with a Graphic User Interface (GUI).

Today, instant messaging has become one of the most prevalent communication mediums. Now we have
platforms such as WhatsApp, Discord (Figure 2.1d), Slack, Skype, Telegram... These platforms have billions of
monthly active users 2 3 and have reshaped how we communicate. Gitter, Slack, and Discord are currently
some of the most used instant messaging platforms and have also been studied as possible data mining
sources for software-related information [7–13] among software developers.

IM platforms allow users to create communities with several different channels where people can discuss
specific subtopics. In many cases, such communities and channels are related to software development.
These channels often follow a Q&A approach. This means that developers ask questions related to the
subtopic of the channel and receive answers from other fellow developers. Users may participate in such
conversations by sending messages. Code blocks, mentions to other users or channels, multimedia, or
attachments can sometimes accompany such messages. These additional elements can help the disentan-
glement process, particularly in software development environments.

1https://en.wikipedia.org/wiki/Instant_messaging
2https://www.businessofapps.com/data/slack-statistics/
3https://www.businessofapps.com/data/discord-statistics/

https://en.wikipedia.org/wiki/Instant_messaging
https://www.businessofapps.com/data/slack-statistics/
https://www.businessofapps.com/data/discord-statistics/

2.1. Instant Messaging 5

(A) Talkomatic interface - 1973 4 (B) IRC client interface - 1988 5

(C) AIM interface - 1997 6 (D) Discord interface - 2015 7

FIGURE 2.1: Interfaces of instant message platforms through the years

6 Chapter 2. State of the Art

2.2 Conversation Disentanglement

Conversation disentanglement is the task of clustering messages into a set of conversations. Even for a
human reader, it is challenging to reconstruct the conversation flow in real-time. But, for a machine, it
represents a highly complex task. IM platforms can reach throughputs of several hundred messages per
hour during active conversations. This means that multiple messages can arrive at almost the same time,
resulting in interleaving messages about different simultaneous conversations. As we can see in Figure 2.2
(taken from an annotated dataset in the source code of [2]), the conversation between Chauncey and Gale is
interrupted by Nestor, who is following up to a possible coding question he had sent previously. The first
conversation is resumed as soon as Nestor finishes.

Gale Chauncey what do you mean?

ok

i got it solved

(if you ask how, i made a mini bash script)

Nestor

Nestor

Nestor

thanks for the help guysNestor

goodbye.Nestor

Paulita: I'm looking for the end to that sentence...Chauncey

the human touch ?Chauncey

T1

T2

T2

T2

T2

T2

T1

T1

Gale Chauncey what do you mean?

ok

i got it solved

(if you ask how, i made a mini bash script)

Nestor

Nestor

Nestor

thanks for the help guysNestor

goodbye.Nestor

Paulita: I'm looking for the end to that sentence ...Chauncey

the human touch ?Chauncey

FIGURE 2.2: Example of fragmented conversation

Another interesting thing to notice is that on Instant Messaging platforms, people tend to write many
short messages one after the other rather than sending one long message. This can also be seen in Figure
2.2, where Nestor, instead of sending one long message, decides to send five messages, each less than ten
words long. This can make the task of creating conversations more difficult. For example, in Figure 2.3,
the messages sent by Chaucey – which are part of the same conversation – are interrupted by Laura asking a
completely unrelated question. A possible algorithm should have a way of referring to previous conversa-
tions to decide which conversation to assign that last message from Chaucey. Aoki et al. [14] demonstrated
the complexity of conversation disentanglement by analyzing voice conversations between 10 people. El-
sner and Charniak [1, 3] investigated IRC logs disentanglement and proposed the core of the algorithm
implemented in this project. Further improvements were introduced by Chatterjee et al. [2], adapting the
algorithm to Slack conversations of software developer communities.

According to Liu et al. [5] conversation disentanglement algorithms can be divided into two main cate-
gories. The first is composed of two-step algorithms, where the relatedness of message pairs is computed,
and then messages are clustered based on this metric. The other category is end-to-end algorithms, where

4https://en.wikipedia.org/wiki/File:PLATO-Talkomatic.png
5https://c9x.me/irc/irc.c.png
6https://techcrunch.com/wp-content/uploads/2017/10/aim.gif
7https://www.protocol.com/media-library/discord-chat.png?id=24629797

https://en.wikipedia.org/wiki/File:PLATO-Talkomatic.png
https://c9x.me/irc/irc.c.png
https://techcrunch.com/wp-content/uploads/2017/10/aim.gif
https://www.protocol.com/media-library/discord-chat.png?id=24629797

2.3. Summary and Outlook 7

if you're not a big business like IBM, you can instead focus
on offering your customers ...

personal sales ?

How do I check which ports are bindable?

Chauncey

Chauncey

Laura

person-to-person sales ?Chauncey

the human touch ?Chauncey

FIGURE 2.3: Example of fragmented conversation

global properties of the conversation flow are captured at once [6]. Elsner and Charniak were among the
first researchers to propose a two-step solution, which they used to disentangle IRC chats [3]. Later, this
algorithm was adapted by Chatterjee et al. to support Slack chat disentanglement [2] and, just recently,
Subash et al. applied to the original algorithm to disentangle Discord chats [6]. An example end-to-end
approach has been proposed by Jiang et al. [4] who used a Siamese Hierarchical Convolutional Neural
Network to identify threads of conversations. Although of great interest and achieving comparable or
even better performances, end-to-end approaches usually offer a black-box tool. We decided to start by
implementing a two-step algorithm for its explainability and extensibility, particularly with new features.

2.3 Summary and Outlook

We have seen in this chapter how challenging it is for humans and machines to disentangle conversations.
Researchers have found several algorithms using supervised and unsupervised machine learning strate-
gies to ease this task. We decided to implement a two-step approach proposed by Elsner and Charniak [1,3].
In the next chapter, we will present the implementation of CODI. We will explain how the service works
and how we implemented the original two-step algorithm.

8

Chapter 3

CODI Implementation

The following chapter will provide an overview of how we developed CODI. We present the backend
implementing the core services. In the sections dedicated to the frontend, we introduce a web interface to
interact and experiment with the backend. The frontend also provides information to evaluate the results
of the disentanglement and the performance of the process.

3.1 Architecture

CODI is a web server composed of both frontend and backend and divided into several modules (Figure
3.1). The fronted is composed of the client module. The backend includes both the disentangling and REST
API modules. On the one hand, the REST API module is responsible for connecting the frontend with the
disentangling module. On the other hand, the disentangling module provides all the logic and algorithms
for pre- and post-processing the messages and clustering them into conversations.

REST API

Disentangler

Backend

Client

Frontend

Max-Entropy
Classifier

Correlation
Clustering

FIGURE 3.1: CODI internal architecture

CODI receives as input a JSON file containing the dump of either a Slack or Discord community. The struc-
ture of the JSON file can be seen in Figure 3.2. Each file must correspond to one community, which must
have an ID, a platform name, a name, a feature set, a list of members, and a list of channels. In the case of the
feature set, it is represented as an array. The first element of the array indicates if chat features should be
included when extracting features from messages. This is a bit, and it can be set to 1 to include this feature
group or 0 otherwise. The other two elements of the array are for the discourse features and the content
related features.

3.2. Backend 9

The list of members should contain all authors – i.e., members who wrote at least one message on one
of the channels – and non-authors. Furthermore, CODI will partially initialize a member not in the list only
if another member mentions it in one of the community messages. This new member will either only have
an ID – since a Discord member mention is of the form <@123456> – or an ID and a name – since a Slack
member mention is of the form <@123456|username>.

The list of channels must contain channel objects. Each channel must have an ID, a name, a path, and a
list of messages. Optionally, they can also contain a list of topics – which needs to have a list of keywords,
and a description. These messages must each have an ID, an author ID (which represents the author’s ID of
the message), a content, a conversation ID (which is explained in the following paragraph), and a timestamp
(which has to be in a standard time format). Optionally, messages can also have a list of attachments – which
have an url field of the multimedia content attached to the message

The dataset format to be sent to CODI is slightly different based on the operation that the user needs
to carry out. These operations are the following:

• Training
This operation is used to train the disentangler’s classification model.

• Validation
This operation creates the conversation clusters and validates them with respect to a gold dataset.

• Prediction
This operation creates the conversation clusters.

In the case of training or validation, the dataset must contain a "conversation": "T1" field for each mes-
sage. The format of the "conversation" content must be T + number. This field is used in training and
validation operations to provide a ground truth for the disentangled conversations.

Given the input dataset, the client will call the respective REST API endpoint, which will call the meth-
ods necessary for the disentanglement of the conversations. As soon as the disentanglement algorithm
finishes, the conversations will be visible on the website.

3.2 Backend

The backend of this project was developed entirely in Python 3.10, with the aid of Django1 – a Python web
framework. We decided to use Django because it is a de-facto standard framework for Python web devel-
opment. In Particular, we used the package Django REST Framework2 to create all the endpoints for our
application.

The implementation of the backend follows an Object-Oriented approach. We modeled the domain of
instant messaging conversations and translated this model into Python classes supporting the correspond-
ing data structures and operations needed (Figure 3.3). The format of the input JSON file described earlier
(Figure 3.2) emerges from this modeling and closely matches the essential aspects of the domain.

1Django: The web framework for perfectionists with deadlines https://www.djangoproject.com/
2Django REST Framework https://www.django-rest-framework.org/

https://www.djangoproject.com/
https://www.django-rest-framework.org/

10 Chapter 3. CODI Implementation

{
" platform ": " slack ",
" features ": [1, 1, 1],
"id": " b4138f14 -af37-4c23-9bda- 289bfc36a7fb ",
"name": " training -set",
" members ": [

{
"id": " d1ff9c5b -f1fc-47c4-a49d- e2691d103b57 ",
"name": " Jermaine "

},
...

],
" channels ": [

{
"id": " c65d238f -d987-49fe-844b- eef3cfceee4c ",
"name": " discussion ",
"path": " agile / discussion ",
" topics ": [

{
" keywords ": [

" Agile ",
...

],
" description ": " Agile Visualization to its greatest !"

},
...

],
" messages ": [

{
"id": " 34ce13f1 -6577-4710-a007- da4e12d523ef ",
" authorId ": " d1ff9c5b -f1fc-47c4-a49d- e2691d103b57 ",
" content ": "But $(date) is in large format ",
" conversation ": "T35",
" timestamp ": "2022-02- 06T19 :24: 23.777 +00:00",
" attachments " : [

{
"url" : " https :// cdn.discordapp.com /..."

},
...

]
},
...

]
},
...

]
}

FIGURE 3.2: Input JSON dataset

3.2. Backend 11

Entity

- uuid: String

+ deserialize(): Entity

Community

- name: String
- members: Members[]
- authors: Author[]
- channels: Channel[]

+ deserialize(): Community

Channel

- path: String
- community: Community
- topics: Topic[]
- messages: Message[]

+ deserialize(): Channel

Member

- username: String
- community: Community

+ deserialize(): Member

Message

- timestamp: String
- processable_text: String
- author: Author
- channel: Channel
- contents: Content[]
- attachments: Attachment[]

+ deserialize(): Message

Conversation

- message: Message[]1 0..*

1

0..*1 0..* 11..*

Topic

- description: String
- channel: Channel
- keywords: String[]

+ deserialize(): Topic

0..*

1..*

Author

- message: Message[]

+ deserialize(): Author

1

1..*

Content

- start_position: int
- end_position: int
- message: Message

+ deserialize(): Content

1..*

1

Attachment

- url: String
- message: Message

+ deserialize(): Attachment

0..*

1

Mention

+ deserialize(): Mention
+ retrieve(): Mention[]

Code

- code: String

+ deserialize(): Code
+ retrieve(): Code[]

Emoji

- unicode: String

+ deserialize(): Emoji
+ retrieve(): Emoji[]

Link

- url: String

+ deserialize(): Link
+ retrieve(): Link[]

Multimedia

- text: String

+ deserialize(): Multimedia
+ retrieve(): Multimedia[]

Text

- text: String

+ deserialize(): Text
+ retrieve(): Text[]

ChannelMention

- channel: Channel

+ deserialize(): ChannelMention
+ retrieve(): ChannelMention[]

SpecialMention MemberMention

- member: Member

+ deserialize(): MemberMention
+ retrieve(): MemberMention[]

1

0..*

1

0..*

FIGURE 3.3: Class Diagram

3.2.1 REST API

The REST API is built with Django REST Framework2. This package allows for the creation of endpoints.
When a new API endpoint is added, the package will automatically create a frontend view for that end-
point which will only accept the specified HTTP operations.

The API is used to connect the frontend with the disentangling module. The frontend makes API calls
every time the user navigates to one of the pages or performs an action. In addition, the API can also
be called separately with cURL or any other API client for REST (such as Postman or Insomnia). After an
exploratory phase, this feature could be leveraged by researchers or users to integrate the results provided
by the application into a custom pipeline for processing conversations.

Table 3.1 illustrates the different endpoints of the microservice. In addition, Figure 3.4 shows the flowchart
of the three operations that can be carried out by CODI.

3.2.2 Disentangler

The disentangler is the core module of the microservice. Specifically, it is used to group messages into
conversations. Conversation grouping is a two-step process consisting of a classifier and a clustering al-
gorithm. For the classification, we used a max-entropy classifier. The second step consists of a correlation
clustering algorithm. It provides as output the groups of messages divided into conversations.

12 Chapter 3. CODI Implementation

Path Type Description

api/convert POST Converts the annotated ANNOT dataset to an annotated JSON dataset

api/train POST Sends the input annotated JSON dataset to the disentangler. The latter will use
this dataset for training

api/validate POST Sends the input annotated JSON dataset to the disentangler. The trained disen-
tangler will predict the conversations and compare them to those given by the
annotation – i.e., the gold set

api/predict POST Sends the input non-annotated JSON dataset to the trained disentangler. The
latter will predict the conversations

api/statistics GET Retrieves the disentangled conversations and – when validating – statistics
about the disentangled conversations

TABLE 3.1: REST API endpoints

Tr
ai

ni
ng

Va
lid

at
io

n
Pr

ed
ic

tio
n

JSON File

ANNOT File Conversion
to JSON

api/convert

Feature
Extraction

Max-Entropy
Classification

api/train

JSON File

ANNOT File Conversion
to JSON

api/convert

Feature
Extraction

Max-Entropy
Classification

api/validate

Correlation
Clustering

Disentangled
Conversations with
Statistics of the

Disentanglement
Process

Trained
Model

JSON File Feature
Extraction

Max-Entropy
Classification

api/predict

Correlation
Clustering

Disentangled
Conversations

FIGURE 3.4: Training, validation, and prediction flowcharts

3.2. Backend 13

Feature Extraction

Before feeding the messages to the classifier, we need a preprocessing phase. Two steps must be performed.
In the first step, we extract all pairs of messages given some constraints. For the pair of messages to be ex-
amined, they need to be within a time window because "for utterances further apart than this, the classifier
has no significant advantage over the majority baseline" [1]. Moreover, as suggested by Chatterjee et al. [3],
we also consider message pairs outside the previously defined time window. The four messages preceding
the current one are always analyzed independently of their arrival time for relatedness.

In the second step of the pre-processing phase, we extract the features from the pairs of messages pre-
viously generated. As done in [1–3], we extract the following features:

• Chat-Specific Features

– Time
The time difference between the first and second messages. This difference is discretized in
logarithmically sized bins – which are one-hot encoded.

– Speaker
If the two messages have the same author or not.

– Mention
If the message of author one mentions author two, or vice versa. The one-hot encoding of this
feature is made up of two bits. The first bit indicates if the first message mentions the author
of message two, while the second bit indicates if the second message mentions the author of
message one.

– Mention Same
If both messages mention the same member of the community.

– Mention Other
If either message one or message two mentions another member of the community who is not
the author of either message one or message two. The one-hot encoding of this feature is made
up of two bits. The first bit indicates if the first message mentions another community member,
while the second bit indicates if the second message mentions another community member.

• Discourse Features

– Cue Words
Either message one or message two uses a greeting (e.g. hello), a one-word answer (e.g. yes, no,
thanks), or a thanking answer (e.g. makes sense, got it). This feature is made up of six bits. Two
bits are used for each group of cue words – i.e., greetings, one-word answers, and thanking answers.
Of these two bits, the first one indicates if the first message contains one of the cue words of that
group, while the second bit indicates if the second message contains one of the cue words of that
group.

– Question
Either message one or message two contains a question – which is explicitly marked by a ?,
or it contains a question word (e.g. what, who). This feature is composed of two bits. The
first indicates if the first message contains a question mark or question word, while the second
indicates if the second message contains a question mark or question word.

– Long
Either message one or message two are longer than ten words. This feature is composed of two
bits. The first indicates if the first message is longer than ten words, while the second indicates
if the second message is longer than ten words.

14 Chapter 3. CODI Implementation

• Content Features

– Repeat
After building a unigram probability dictionary – of which the first 50 most frequent words are
removed, and retrieving all the common words between message one and message two, bin the
common words logarithmically based on their probability. Finally, the bins are one-hot encoded
into ten bits.

– Tech
If either message contains technical jargon. This feature is composed of two bits. The first indi-
cates if the first message has technical jargon, while the second indicates if the second message
contains technical jargon.

– Code
If either message one or message two contains a code snippet. This feature is composed of two
bits. The first bit indicates if the first message has a code snippet. While the second bit indicates
if the second message includes a code snippet.

– Link
If either message one or message two contains a URL. This feature is composed of two bits. The
first bit indicates if the first message contains a URL. while the second bit indicates if the second
message contains a URL.

Given these features, their one-hot encodings are condensed in matrix form to be used as input for the
classifier. Each row of the matrix corresponds to a pair of messages, and each column corresponds to a bit
of the one-hot encoding of a feature. This matrix can now be used as input for the max-entropy classifier.

Max-Entropy Classifier

In the first step of the actual disentangling algorithm, we use a binary classification regression model to
determine whether the pair of messages are related to one another or not. A logistic regressor carries out
this classification. Before starting to use CODI to disentangle conversations, the model must be trained.
The user can use either the frontend or the API to send the regressor an annotated dataset through the
api/train endpoint. Since this is a supervised machine-learning algorithm, the dataset must be annotated.
When the model has finished training, the user can now perform validations and predictions on datasets.
To perform validations, an annotated dataset must be sent to the api/validate endpoint. In contrast, in
the case of a prediction, a non-annotated dataset must be sent to the api/predict endpoint of CODI.

Correlation Clustering

The final step of the disentangling algorithm consists in clustering the messages. Such a clustering algo-
rithm aims to reconstruct groups of related messages based on the output of the relatedness classifier. This
algorithm uses the previously found relations to create clusters of messages most closely related. Such
a result can be obtained by implementing a correlation clustering algorithm. Being such an algorithm NP-
complete, our reference paper [1] opted for a heuristic approach to the problem. In particular, the algorithm
they used is a greedy voting algorithm [15].

The greedy voting algorithm (Algorithm 1) loops on all of the messages in a channel of a community (line
3). We loop on all clusters in C for each of these messages. For each cluster, we compute the sum of the
weights – i.e., wij = pij − 0.5, where pij is the probability that messages i and j are related – and append it
to array Q (line 6). After exhausting all clusters, we must find the clustered index with the highest quality
value (line 8). Finally, if the value of C[c∗] is greater than 0, then we can append the current message i to
cluster c∗ (line 10); otherwise, we create a new cluster and append message i to this new one (line 12).

3.3. Frontend 15

Algorithm 1 Greedy voting algorithm

1: C ← array[] ⊲ The array of clusters
2: k ← 0 ⊲ The number of clusters
3: for i = 1 . . . n do
4: Q ← array[] ⊲ The array of qualities of each cluster
5: for c = 1 . . . k do
6: Q[c] ← {∑j∈C[c] wij}
7: end for
8: c∗ ← arg max1≤c≤k Q[c]
9: if Q[c∗] > 0 then

10: C[c∗] ← C[c∗] ∪ {i} ⊲ Add message i to cluster C[c∗]
11: else
12: C[k++] ← {i} ⊲ Create a new cluster and add message i to it
13: end if
14: end for

3.3 Frontend

In the frontend module of CODI, we have created several pages for users to interact with the backend
quickly (Table 3.2). Users can visualize the generated conversations and valuable statistics on the validation
process. This module allows the user to select only a subset of the features and perform training, validation,
or prediction operations again to evaluate the impact of the selected feature groups on the disentanglement
process.

Path Name Description

/ Home Here the users can upload a JSON file containing the mes-
sages of the community.

statistics/validation Validation Statistics Here the user can check the performance and statistics of
the most recent validation operation performed.

statistics/prediction Prediction Statistics Here the user can check the conversations of the most re-
cent prediction operation performed.

annotation Dataset Annotation Here the user can manually annotate a dataset given as in-
put.

TABLE 3.2: Frontend pages

3.3.1 Homepage

In the homepage of CODI (Figure 3.5), on the left, we have the section of the page where the user can drop
the JSON file of the community. Instead, we can find the section dedicated to some file settings on the right.
The user can specify the type of operation to perform, which can be training, validation or prediction). It can
also specify which platform the message was taken from, which can be auto – this means that the platform
is inferred from the platform field of the JSON file, Discord, or Slack. Finally, we have three checkboxes
representing the group of features we want to extract from the messages. These groups are chat-specific
features, discourse features, and content features.

16 Chapter 3. CODI Implementation

FIGURE 3.5: Homepage view

3.3.2 Validation Statistics

In the validation statistics section (Figure 3.7), the user can view the statistics of the most recently performed
validation. The statistics include the time performance of the algorithm, the micro-averaged f1 score of the dis-
entanglement, and the accuracy, precision, recall, and f1 score of the single feature groups – as well as the
combined one – of the max-entropy classifier. Finally, the messages are shown with the resulting conversa-
tion assignment (Figure 3.6). On the left side, the output of CODI can be compared with the ground thruth
on the right side. Conversation groups are color coded to help identify them better than by simply looking
at their conversation id.

FIGURE 3.6: Validation statistics collapsed view

3.3. Frontend 17

FIGURE 3.7: Validation statistics extended view

3.3.3 Prediction Statistics

In the prediction statistics page (Figure 3.8), we have a similar layout as the one seen on the previous page.
Unlike the other page, here, the two tables both represent the messages coming from the disentangler. The
table on the left represents messages in chronological order, while on the right, we have the same messages
but grouped in their corresponding conversation. Moreover, if a user clicks on one of the messages on the
left, it will be guided to the same message as assigned to a conversation on the right – and vice-versa.

FIGURE 3.8: Prediction statistics view

18 Chapter 3. CODI Implementation

3.3.4 Dataset Annotation

The user can upload a JSON file containing a Discord or Slack community dump to the dataset annotation
page. When CODI has finished analyzing the data, it will present a view similar to Figure 3.9. On this tab,
the user can manually annotate the conversations for each of the community’s messages.

Let’s assume that the user wishes to complete annotating the data later. In that instance, the partially
annotated dataset can be saved by clicking the "Finish Annotating" button at the top or bottom of the mes-
sage list. When saving the conversation numbers, a None will be added wherever a label has not been yet
assigned. Otherwise, the user-specified conversation number will be saved. When the user decides to up-
load the partially annotated file again, CODI will automatically recognize whether a message has already
been assigned to a conversation or not and display it accordingly – as shown in Figure 3.9.

FIGURE 3.9: Dataset annotation

19

Chapter 4

Result Analysis

In this section, we will describe the experiments we carried out to assess the correctness and performance
of our version of the two-step method implemented by Elsner and Charniak [1,3], and Chatterjee et al. [2].
The first experiments were carried out utilizing annotated datasets provided by the original authors, which
can be obtained from their GitHub repository. More tests were subsequently carried out, this time using
the Discord dataset we annotated to determine any potential limitation of such an implementation.

4.1 Evaluation Methods

We use several types of methods to evaluate the solution produced by CODI. We use accuracy, precision,
recall and F1 score for the binary classification – i.e., the max entropy. We use microaveraged F1 score for the
evaluation of the clustering part of the algorithm – i.e., correlation clustering.

These measurements were useful to compare our implementation with the original one. Since we re-
implemented from scratch the message pairs creation, the feature extraction, the max-entropy classification and
the correlation clustering, we needed to make sure that everything was working correctly and that the perfor-
mance of CODI was on par with the performance of the original implementation by Elsner and Charniak [3]
– and build up from there.

4.1.1 Max Entropy

The accuracy measures how many times the model guessed correctly. Precision measures how precise the
model is by considering all of the predicted positives – true positives and false positives. Recall, on the
other hand, measures how precise the model is by considering all of the actual positives – false negatives
and true positives. Finally, the F1 score is the harmonic mean between precision and recall. This measure-
ment is used to determine which classifier produces better results.

As done by Elsner and Charniak [1] and Shen et al. [16], let’s assume we have a gold conversation i with
size ni, a predicted conversation j with size nj, and an overlap between the two of size nij. Then we can
write the formulas for precision, recall and F1 score as follows:

P =
nij

nj
R =

nij

ni
F1(i, j) = 2 · P · R

P + R
(4.1)

4.1.2 Correlation Clustering

For the evaluation of the clustering algorithm, we cannot use the F1 score described above. After cluster-
ing the messages, we are not dealing with two classes anymore. The number of classes is now equal to
the number of conversations created by the clustering algorithm. Moreover, the conversations generated
might not be perfectly lined up with the "gold" conversations. If we were to use the F1 score, then a slight

20 Chapter 4. Result Analysis

misalignment could cause the score to drop and be inaccurate.

Thus, we need to use another evaluation measure that will compute a global average F1 score. This eval-
uation measure is called micro-averaged F1 score (Formula 4.2).

F1 = ∑
i

ni

n
max

j
F1(i, j) (4.2)

4.2 Disentanglement Performance

4.2.1 Original Datasets

To verify the correctness of our implementation with respect to the state-of-the-art [1–3], we’ve tested CODI
with extracts from both the Python and Clojure datasets present in the literature [6]. We’ve found that the
two implementations give comparable results by running such tests. In Table 4.1 we have the performances
of the combined features for both the max-entropy classifier – accuracy, precision, recall, and F1 score; and
the performance of the correlation clustering algorithm – micro-averaged f1 score.

Accuracy Precision Recall F1 Score Micro-Averaged F1 Score

python 60 86 62 72 78

clojure 67 94 68 79 88

TABLE 4.1: CODI results from original datasets

4.2.2 Custom Dataset

To further test our implementation’s robustness and accuracy, we chose to annotate 294 messages from
a Discord server about Roassal development. We’ve purposefully chosen these messages because many
conversations are interleaving one another. After training the model with the training_slack.annot an-
notated dataset – which has been used by the original authors [1–3] as well to train their models; by per-
forming a validation operation on the pharo.annot dataset, we obtained the results displayed in Table 4.2.

Chat Features Discourse Features Content Features Combined Features

Accuracy 68 64 69 68

Precision 82 80 78 68

Recall 76 72 83 77

F1 Score 79 76 81 79

Micro-Averaged F1 66 53 47 63

TABLE 4.2: CODI results from the Roassal dataset

After training both CODI and Chatterjee et al.’s implementations with the original training_slack.annot,
we fed pharo.annot to both the modified version of the original algorithm [2], and to our algorithm. By
doing so, we obtained a micro-averaged F1 score of 61 for Chatterjee et al.’s implementation and a micro-
averaged F1 score of 63 for CODI. This result suggests that the algorithm proposed by Chatterjee et al. can

4.3. Disentanglement Quality 21

sometimes find it challenging to disambiguate certain conversations.

The inability to properly disambiguate conversations may be caused by the fact that this algorithm does
not work well with long one-argument conversations, where two or more people talk about the same topic
for an extended period of time. We have noticed that, in some cases, it seems like the algorithm forces the
separation of messages, which in reality, are part of the same conversation. For example, we can see in
Figure 4.1 that both CODI and Chatterjee et al.’s algorithm perform similarly. In the red boxes of the two
images, we can see how the two messages are being forced into a new conversation – even though they are
part of the previous conversation.

Alexandre Bergel Just wondering whether this is part of your goal

Not yet

That's interesting. Are you saying applying good design
practices to a visualization programmatically?

I think that being able to generate some script
modification would be a plus

Ellis Harris

Ellis Harris

Alexandre Bergel

could beAlexandre Bergel

> chicoary: not sure to fully understand. I am
wondering, why do you need to remove the shapes?
_CODEBLOCK__ Alexandre Bergel: I removed the
shapes so I could interactively change the case by
executing part of the script. This is a very rushed
experimental code. I've understood the shapes fixed.
Thanks for your attention.

chicoary

Glad to have helpedAlexandre Bergel

If I provide a script that produce a visualization, is there
a way to mprove the script?Alexandre Bergel

T3

T3

T3

T3

T3

T3

T11

T3

Ellis Harris: This is super nice. Are you planning to port
it to Roassal3.StepharoT10

Alexandre Bergel Just wondering whether this is part of your goal

Not yet

That's interesting. Are you saying applying good design
practices to a visualization programmatically?

I think that being able to generate some script
modification would be a plus

Ellis Harris

Ellis Harris

Alexandre Bergel

could beAlexandre Bergel

> chicoary: not sure to fully understand. I am
wondering, why do you need to remove the shapes?
_CODEBLOCK__ Alexandre Bergel: I removed the
shapes so I could interactively change the case by
executing part of the script. This is a very rushed
experimental code. I've understood the shapes fixed.
Thanks for your attention.

chicoary

Glad to have helpedAlexandre Bergel

If I provide a script that produce a visualization, is there
a way to mprove the script?Alexandre Bergel

T6

T6

T6

T6

T6

T6

T9

T6

Ellis Harris: This is super nice. Are you planning to port
it to Roassal3.

StepharoT10

FIGURE 4.1: Conversation disentanglement comparison – on the left CODI, on the right Chat-
terjee et al.

4.3 Disentanglement Quality

In addition to performance analysis of CODI, we also perform a qualitative analysis of the generated con-
versations. This qualitative analysis was performed on the conversations generated by a model trained
with training_slack.annot and predicted on pharo.annot. Figure 4.2 shows a conversation prediction
made by CODI. In this case, we can see that the algorithm correctly separates conversations 2 and 3. Con-
versation 2 is resumed with the last message (3). As we can see also on the right of the image, the in-
terleaving conversation is separated from the original conversation (2), and the last message is appended
to conversation 2. The second message (1) defines another of the feature extraction problems performed
by CODI. The problem is that Stepharo tries tagging user Alexandre Bergel but uses the wrong name. This
causes Discord to not recognize it as a valid mention, and the exported dataset contains @alex instead of
<@ID_OF_ALEXANDRE>.

Figure 4.3 shows another section of the disentangled conversation. This dataset is the same as the one
used in 4.2. In this case, we have a correct disentanglement again. Here we can see that conversation 3 is
interrupted by Ellis Harris. Correctly, CODI considers this a separate conversation and gives it an ID of 9.

22 Chapter 4. Result Analysis

FIGURE 4.2: Prediction on pharo.annot

This conversation is then interrupted by Alexandre Bergel – who is answering to chicoary. Finally, Alexandre
Bergel answers to Ellis Harris, making the last message part of conversation 9.

FIGURE 4.3: Prediction on pharo.annot

4.4 Time Performance

In addition to computing the disentangling performance, CODI also computes the time each step of the
algorithm takes. Table 4.3 summarizes the times of the three datasets we’ve tested CODI on (the results are
in seconds).

Training Max-Entropy Correlation Clustering Total

python 103.6 8.5 0.1 166.3

clojure 104.1 3.5 0.06 122.5

pharo 110 3 0.02 120.5

TABLE 4.3: CODI times for all datasets

4.5. Summary and Outlook 23

The training column indicates how much time the training of the model took in total. All models were
trained with the training_slack.annot dataset. The max-entropy column indicates the time CODI takes
to extract all the features from the pairs of messages and make a prediction using the trained max-entropy
classifier. The correlation clustering column represents the time the algorithm uses to perform the greedy
voting algorithm that creates the clusters of conversations. Finally, the total column represents the time
CODI used to train the max-entropy model, extract the features from the message pairs, run the max-
entropy classifier on the extracted pairs, and finally cluster the messages into conversations.

4.5 Summary and Outlook

In this section, we’ve presented comparisons with the reference implementation to assess the correctness
of CODI. We’ve also seen limitations of the algorithm. In some cases, it performs very well, as in the case
of the python and clojure datasets. However, the custom dataset we annotated highlighted its limitations.
This is mainly because the messages in the dataset have some problematic sections to disentangle. In the
next chapter, we will give some concluding remarks on the projects and suggest some enhancements that
can be done to CODI.

24

Chapter 5

Conclusion and Future Work

With this project, we implemented a REST API capable of disentangling conversations using state-of-the-
art algorithms. The service, in addition to an API, has a graphical client, which makes the tasks of training
the model, validating, and predicting simple and fast. CODI also offers – in the case of a validation op-
eration – the possibility to receive statistics regarding the performance of the algorithm and the quality
of the conversations. Its ease of use makes it the best tool for even non-technical researchers to choose in
the exploratory phases of their research. In addition to being able to disentangle conversations, CODI also
offers the possibility to upload a non-annotated dataset. This can be manually annotated by the user and
exported directly as a JSON file.

5.1 Future Work

Many aspects of CODI can be further expanded upon. The following are some possible enhancements:

• Customizable First Step
The first step of the disentangling algorithm can be made customizable. This means that we could
offer several algorithms and models to choose from, and the user – from a specific view – can decide
which of the algorithms to use.

• Selectable Hyperparameters
Another possible enhancement is to make the hyperparameters selectable. This means that from a
particular view, as in the case of the pluggable algorithm discussed earlier, the user can select the
values of all the hyperparameters used by CODI.

• API Keys
Finally, another possible enhancement would be implementing access based on API keys. This would
mean that each user can train and predict disentanglements with CODI as if it had many isolated
compartments assigned to a key – i.e., a user. By doing so, the models trained and used by each user
would not be able to influence any other model trained by any other user of the service.

5.2 Concluding Remarks

As shown throughout this report, our implementation of the two-step algorithm works very well with
some datasets and not that well with others. This means that this algorithm is not an all-around good
and changes significantly based on the dataset we use to validate the model. Finally, some conversations
are challenging – if not impossible – to disentangle even by a human being. This encourages extending
CODI with new state-of-the-art models, leveraging its architecture to simplify comparisons and extensive
experimentation on different datasets.

25

Bibliography

[1] M. Elsner and E. Charniak, “Disentangling chat,” Computational Linguistics, vol. 36, no. 3, pp. 389–409,
2010.

[2] P. Chatterjee, K. Damevski, N. A. Kraft, and L. Pollock, “Software-related slack chats with disentan-
gled conversations,” in Proceedings of MSR 2020 (International Conference on Mining Software Reposito-
ries), pp. 588–592, 2020.

[3] M. Elsner and E. Charniak, “You talking to me? A corpus and algorithm for conversation disentan-
glement,” in Proceedings of ACL-HLT 2008 (Association for Computational Linguistics: Human Language
Technologies), pp. 834–842, 2008.

[4] J.-Y. Jiang, F. Chen, Y.-Y. Chen, and W. Wang, “Learning to disentangle interleaved conversational
threads with a siamese hierarchical network and similarity ranking,” in Proceedings of the 2018 Con-
ference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pp. 1812–1822, 2018.

[5] H. Liu, Z. Shi, and X. Zhu, “Unsupervised conversation disentanglement through co-training,” arXiv
preprint arXiv:2109.03199, 2021.

[6] K. M. Subash, L. P. Kumar, S. L. Vadlamani, P. Chatterjee, and O. Baysal, “DISCO: A dataset of discord
chat conversations for software engineering research,” 2022.

[7] P. Chatterjee, K. Damevski, L. Pollock, V. Augustine, and N. A. Kraft, “Exploratory study of slack
q&a chats as a mining source for software engineering tools,” in 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR), pp. 490–501, IEEE, 2019.

[8] B. Lin, A. Zagalsky, M.-A. Storey, and A. Serebrenik, “Why developers are slacking off: Understanding
how software teams use slack,” in Proceedings of the 19th acm conference on computer supported cooperative
work and social computing companion, pp. 333–336, 2016.

[9] E. Parra, A. Ellis, and S. Haiduc, “Gittercom: A dataset of open source developer communications in
gitter,” in Proceedings of the 17th International Conference on Mining Software Repositories, pp. 563–567,
2020.

[10] M. Raglianti, R. Minelli, C. Nagy, and M. Lanza, “Visualizing discord servers,” in 2021 Working Con-
ference on Software Visualization (VISSOFT), pp. 150–154, IEEE, 2021.

[11] L. Shi, X. Chen, Y. Yang, H. Jiang, Z. Jiang, N. Niu, and Q. Wang, “A first look at developers’ live chat
on gitter,” in Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pp. 391–403, 2021.

[12] V. Stray and N. B. Moe, “Understanding coordination in global software engineering: A mixed-
methods study on the use of meetings and slack,” Journal of Systems and Software, vol. 170, p. 110717,
2020.

26 BIBLIOGRAPHY

[13] O. Ehsan, S. Hassan, M. E. Mezouar, and Y. Zou, “An empirical study of developer discussions in the
gitter platform,” ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 30, no. 1,
pp. 1–39, 2020.

[14] P. M. Aoki, M. H. Szymanski, L. Plurkowski, J. D. Thornton, A. Woodruff, and W. Yi, “Where’s the
"party" in "multi-party"? Analyzing the structure of small-group sociable talk,” in Proceedings of the
2006 20th anniversary conference on Computer supported cooperative work, pp. 393–402, 2006.

[15] M. Elsner and W. Schudy, “Bounding and comparing methods for correlation clustering beyond ILP,”
in Proceedings of the Workshop on Integer Linear Programming for Natural Language Processing, pp. 19–27,
2009.

[16] D. Shen, Q. Yang, J.-T. Sun, and Z. Chen, “Thread detection in dynamic text message streams,” in Pro-
ceedings of the 29th annual international ACM SIGIR conference on Research and development in information
retrieval, pp. 35–42, 2006.

