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Abstract

The use of polygonal meshes, especially tri-
angle meshes, is manifold but a lot of algo-
rithms require the mesh to be structured in a
certain way and cannot be applied to an ar-
bitrarily shaped mesh. The process of replac-
ing an arbitrary mesh by a structured one is
called remeshing. Triangle meshes with sub-
division connectivity are an important class
of structured meshes and have been studied
thoroughly in the past. In this paper we con-
centrate on another class of regular meshes in-
stead and present a method for replacing an
arbitrary triangle mesh by a regular quadri-
lateral mesh. These kind of meshes can later
be used for a very simple and efficient surface
reconstruction method with tensor product B-
spline surfaces.

1 Introduction

Polygonal meshes are used in many fields of
computer science for various purposes, e. g.
modeling, visualization, and simulation. Es-
pecially in computer graphics, triangle meshes
are of great importance as a standard surface
representation due to the simplicity and flex-
ibility of this piecewise linear description and
the fact that they are widely supported by
the graphics hardware. But since meshes with
millions of triangles are not uncommon these
days, even this simple surface description can
still be quite awkward to handle because of
the sheer size of data that has to be processed.
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If the triangle meshes are structured, how-
ever, efficient multiresolution algorithms like
level-of-detail rendering [2], progressive trans-
mission [17], wavelet decomposition [19, 21],
or multiresolution editing [22] can be applied.
The special structure required by these algo-
rithms is the subdivision connectivity, which
is generated by iteratively refining a base
mesh and is furthermore characterized by the
property of almost all vertices having valence
six (cf. Fig. 1a). The process of transform-
ing a mesh with arbitrary connectivity into
one with subdivision connectivity is called
remeshing, and several approaches exist to
solve this problem [4, 15, 16, 18].

In this paper we have focused on remeshing
triangle meshes with another type of struc-
tured meshes and present an algorithm for
converting a given mesh into a regular quadri-
lateral one, i. e. a mesh with quadrilateral
facets and all vertices having valence four ex-
cept for the boundary vertices (cf. Fig. 1b).

(a) (b)

Figure 1: A mesh with subdivision connectiv-
ity (a) and a regular quadrilateral mesh (b).



It follows easily from Euler’s Characteris-
tic that the only closed objects that can be
modeled by a non-degenerated regular quadri-
lateral mesh are the torus and Klein’s bottle,
so we regard only meshes with boundary. But
since any closed object can be partitioned into
a collection of such bordered patches, this is
no serious restriction.

The main idea of our algorithm is to circum-
vent the three-dimensional remeshing prob-
lem R3 by flattening the initial mesh and solv-
ing the two-dimensional problem R2 instead
(cf. Fig. 2). Since we consider only meshes
with boundary, it is always possible to flatten
them, i. e. to find a corresponding two-dimen-
sional mesh T2, which is called the parame-
trization. The deflation function f : R

3 → R
2

is then defined by linearly mapping each tri-
angle of T3 to the corresponding triangle in T2

while the inverse inflation function F = f−1

enables us to get back from R
2 to R

3. Sec-
tion 2 shows different methods of constructing
parametrizations. Section 3 discusses how to
remesh the projected mesh T2 with a regular
quadrilateral mesh Q2 and how this mesh is
lifted back into R

3 to obtain a remesh Q3 of
the initial mesh. The remesh Q3 can be either
used as the base mesh of a quadrilateral sub-
division scheme [13] or as the input data of
a simple and efficient reconstruction method
that approximates the given data by a tensor
product B-spline surface as explained in Sec-
tion 4. In Section 5 we illustrate the results of
the algorithm by showing some examples and
close with a summary in Section 6.

2 Parametrizations

The problem of parametrizing triangle meshes
is fundamental for many applications in com-
puter graphics and computer aided geomet-
ric design (CAGD) and has been addressed
by many authors before. In this section we
give a brief overview of the different methods
and discuss which of them is applicable for the
remeshing algorithm.

The methods in [4, 7, 9, 20] are generaliza-
tions of the well-known parametrization meth-
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Figure 2: The main idea: R3 ≈ F ◦ R2 ◦ f .

ods for curves and have the following strategy
in common: First, they define a parametriza-
tion of the boundary vertices, then the inte-
rior vertices of the parametrization are found
by solving a sparse linear system. All these
approaches aim at minimizing the distortion
that inevitably occurs when a complex tri-
angle mesh is flattened and, except for the
spring-energy method of Greiner and Hor-
mann in [9], have a reproduction property, i. e.
whenever the initial mesh T3 is planar, the re-
sulting parametrization T2 is an affine map-
ping of T3. Since the discrete harmonic map
that is used by Pinkall and Polthier in [20] and
Eck et al. in [4] is not guaranteed to avoid
foldovers, we propose to use the shape pre-
serving parametrization presented by Floater
in [7]. This method is a generalization of the
other approaches and generates parametriza-
tions without foldovers that are very similar
to those obtained by the harmonic map.

A drawback of the previously mentioned
methods is that the criterion used for mini-
mizing the distortion can only by applied to
the interior vertices while the parametrization
of the boundary vertices is chosen heuristi-
cally. An approach to overcome this restric-
tion that also guarantees to avoid foldovers
and has the reproduction property are the
most isometric parametrizations presented by
Hormann and Greiner in [11]. They determine
the parametrization by minimizing a deforma-
tion functional that measures the distortion
of the deflation function f that linearly maps
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Figure 3: Two-dimensional remeshing of a triangle mesh with a regularly spaced rectangular
grid (a) and a regular quadrilateral mesh (b).

each triangle of T3 to the corresponding trian-
gle in T2. The main advantage of this method
is that the boundary vertices can be included
in the optimization process, thereby avoiding
the distortions that tend to occur near the
boundary of the parametrizations obtained by
the other techniques. On the other hand, this
approach requires the minimization of a ratio-
nal quadratic function and is therefore quite
slow. But the computational costs can be re-
duced dramatically by using the hierarchical
parametrization technique presented in [12],
which can also be applied to the other meth-
ods. Naturally, this approach also allows to
fix the boundary vertices at previously chosen
positions as needed for one of the remeshing
techniques illustrated in the next section. In
this case the results are very similar to the
shape preserving and the discrete harmonic
parametrization.

3 Remeshing

After having flattened down the initial tri-
angle mesh to a planar domain, the remesh-
ing procedure reduces to the two-dimensional
problem R2 that is much easier to solve than
the original problem R3. All we have to do is
to create a planar regular quadrilateral mesh
Q2 such that its boundary ∂Q2 coincides with
∂T2. Once this planar remesh is found, we can
use the inflation function F to lift it back in R

3

in order to get the remesh Q3 of T3. The ver-
tices Pi of Q3 are determined by detecting for
each vertex pi of Q2 the surrounding triangle
of T2, computing the barycentric coordinates
with respect to this triangle and linearly in-

terpolating the corresponding triangle of T3 in
R

3 with these barycentric coordinates.
The easiest way of finding such a Q2 is en-

abled by forcing the boundary vertices of the
parametrization T2 to form a rectangle. Then
we can simply take a regularly spaced rectan-
gular grid as Q2 (cf. Fig. 3a). This approach
requires the specification of four corner ver-
tices in the given mesh T3, which correspond
to the corners of the rectangular parameter
domain. This can be done by considering the
boundary polygon ∂T3 of the mesh and tak-
ing those four vertices with the smallest in-
terior angle. If the shape of the boundary
polygon fails to show four outstanding ver-
tices, one can also choose these corner ver-
tices to be uniformly distributed on ∂T3. The
latter method was used for the head data set
in Fig. 12, since the boundary of that mesh
more resembles a circle than a quadrilateral.
The remaining boundary vertices will then be
distributed on the sides of the rectangle by
one of the standard parametrization method
for curves. In our examples the chord length
parametrization yielded the best results.

Another remeshing method has to be ap-
plied if we do not fix the boundary of T2

and rather let it develop naturally by using
the most isometric parametrization scheme.
Again we have to identify four vertices to
form the corners of the remesh, but this
time we can detect them directly on the two-
dimensional boundary of T2 rather than ana-
lyzing the three-dimensional ∂T3. The quadri-
lateral formed by these vertices already is a
coarse remesh Q2 of the parametrization T2

which is now refined to obtain more detailed
versions ofQ2 (cf. Fig. 3b). In order to achieve



this, we iteratively split all faces of Q2 into
four quadrilaterals and determine the posi-
tions of the new vertices as follows. The new
boundary vertices are located on the bound-
ary of the parametrization T2 such that the
distance along ∂T2 to the neighboring bound-
ary vertices is the same. The new interior ver-
tices are first set at the center of the edge or
face they arise from and then optimized by
applying discrete Laplace smoothing, which
is also called the umbrella operator [14]. This
operator successively moves each interior ver-
tex p to the barycenter of its four neighboring
vertices (cf. Fig. 4a)
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p
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and needs only a few iterations to converge to
a stable configuration.

By applying this smoothing operator we
aim at two of the three criterions that char-
acterize a good remesh. On the one hand the
shape of Q2’s faces become as rectangular as
possible, on the other hand they all have ap-
proximately the same size. Note that the sim-
ple method explained before perfectly meets
both conditions. But since we finally want to
attain a good remeshQ3 of the initial mesh T3,
we should think about the effect of the infla-
tion function on the appearance of the quadri-
lateral faces. As the parametrizations we use
for flattening T3 minimize the distortion of
the deflation function f , the same property
holds for the inverse inflation function F , and
thus the shape deformation of the faces is kept
small. I. e., a rectangle in Q2 will also be sim-
ilar to a rectangle in Q3, but the size of the

p

p
W

p
S

p
N

p
E

(a)

p

p
W

p
S

p
N

p
E

(b)

Figure 4: p at barycenter of its neighbors (a)
and at the weighted barycenter with weights
w
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Figure 5: Calculating the weights for the mod-
ified umbrella operator. E. g., w

S
is the lateral

area of the pyramid with top point PS and
lower base �(P, PSE, PSS, PSW), marked by dot-
ted lines.

faces may be modified by the inflation map-
ping, as we can see in Fig. 11. So instead of
using the umbrella operator for smoothing the
planar remesh, we apply a weighted version of
this operator (cf. Fig. 4b)
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choosing the weights such that the smooth-
ing in R

2 imitates a smoothing of the final
remesh Q3 in R

3. This effect is achieved by
transforming p and all its surrounding vertices
to R

3 (e. g. P = F (p)) and assigning the area
of the pyramid formed by Pi, i ∈ {N,E, S,W}
and the four neighboring vertices to the corre-
sponding weight wi (cf. Fig. 5). This results in
the vertex p being pushed towards the neigh-
bor with the largest weight and surround-
ing area resp. and thus in more uniformly
sized quadrilaterals of the three-dimensional
remesh Q3.

The third characterization of a good remesh
is the distance to the original mesh, which can
be measured by the Hausdorff distance. This
is obviously fulfilled for the planar remesh be-
cause the Hausdorff distance of T2 and Q2 is
zero, but it becomes more important if we look
at T3 and Q3 in R

3. Since the inflation func-
tion F guarantees the vertices of Q3 to lie on
the surface of T3, the distance between the
two meshes is the maximum distance between



Figure 6: The convex hull of a quadrilateral
(left) is formed by four triangles (right).

the vertices of T3 and the facets of Q3. This
distance can be approximated by determin-
ing the surrounding quadrilateral in R

2 and
measuring the distance to the convex hull of
the corresponding facet in R

3, which is the
minimum distance to the four triangles that
can be constructed with the corners of that
quadrilateral (cf. Fig. 6).

It is easy to show that any user specified
error tolerance for the distance between T3

and Q3 can be kept by iteratively refining the
remesh up to a certain level, but the number
of vertices will grow exponentially this way. It
is therefore more adequate to refine Q3 adap-
tively, i. e. splitting only those facets where
the distance to one of the vertices of T3 ex-
ceeds the tolerance. Unfortunately, it is im-
possible to retain the regularity of the quadri-
lateral mesh this way, so we must either ac-
cept T-vertices or resolve them by adding Y-
elements (see [13]) to obtain a non-regular but
quadrilateral remesh (cf. Fig. 7).

4 Surface Reconstruction

Despite the practical use of triangle meshes
there exist a lot of applications that require
surface descriptions with a higher order of
continuity, which is essential for representing
surfaces with continuous normal fields or con-
tinuous curvatures. Common CAGD software
as well as modern modeling and animation
tools typically use tensor product B-spline or
NURBS surfaces for these reasons. The rep-
resentation of real world objects in such sys-
tems necessitates to scan them and to recon-
struct surfaces from the measured data, a pro-
cess known as reverse engineering. Since the
scanned data is usually unstructured and con-
tains measurement errors, Scattered Data Ap-

proximation is a typical surface reconstruction
method: First, a two-dimensional parameter
value pi is assigned to each data point Pi (e. g.
by one of the parametrization methods dis-
cussed in Sec. 2), then the control points of the
approximating surface S : R

2 → R
3 are found

in an optimization process that minimizes the
distance ‖Pi−S(pi)‖ between the data points
and the corresponding points on the surface.
Unfortunately, the resulting surfaces tend to
oscillate heavily and fairness functionals have
to be added if smooth surfaces are desired
[3, 8, 9, 10].

Since this problem does not occur as badly
for other types of surfaces, e. g. triangular
Bézier surfaces, it seems as if the rigid tensor
product structure does not get along with the
scattered data points very well, although this
phenomenon has not been fully understood
yet. A solution to this problem is provided
by the remeshing algorithm explained above,
which replaces the scattered data points by
a set of structured vertices and enables a
very simple and efficient surface reconstruc-
tion method: tensor product B-spline inter-
polation. I. e., we interpolate the vertices of
the quadrilateral remesh Q3, thereby approx-
imating the original data values of T3 indi-
rectly rather than approximating them directly
as in the previously mentioned approach. We
will now briefly explain how the interpolating
spline surface is computed and refer to [1, 6]
for a detailed discussion.

Suppose we have a regular quadrilateral
remesh Q3 with vertices P00, . . . , Pmn. First,
we choose two knot sequences u and v and
the cubic B-spline basis functions Mi and
Nj defined thereon. Since the knot spacing

Figure 7: Adaptively refined quadrilateral
mesh with T-vertices (left) and Y-elements
(right).



Figure 8: Surface reconstruction of a technical data set: original mesh T3 shaded (top left) and
as wireframe (bottom left), regular quadrilateral remesh Q3 (bottom right) and reconstructed
tensor product B-spline surface (top right).

should relate to the distance of the vertices
that are to be interpolated and because of
the second remesh criterion aiming at evenly
sized facets we can use uniform knot sequences
with quadruple end points for simplicity, i. e.
u = {0, 0, 0, 0, 1, 2, . . . , m−1, m, m, m, m} and
v = {0, 0, 0, 0, 1, 2, . . . , n − 1, n, n, n, n}. The
interpolation problem for the bicubic B-spline
surface S(u, v) =

∑
i,j Mi(u)Nj(v)dij leads to

the (m + 1)(n + 1) interpolation conditions
S(i, j) = Pij . In order to obtain a uniquely
solvable problem we have to add further con-
ditions. We have chosen the natural end
conditions, i. e. setting all second derivatives
along the border and the fourth cross deriva-
tives at the corners to zero, but other choices
are conceivable. The conditions now add up
to (m+3)(n+3), matching exactly the num-
ber of unknown control points dij, which can
be determined by solving m+3 linear systems
with the same (n+3)×(n+3) matrix and n+3

systems of order (m + 3) × (m + 3). Due to
the local support property of the B-spline basis
functions the two matrices are tridiagonal so
that the linear problems can each be solved in
linear time. Assuming m = n, this approach
amounts to O(m2) computations in contrast
to the O(m6) operations needed for solving
the scattered data approximation problem.

Another advantage of this approximation
method is that it does not require any fairing
of the resulting surface. We have observed in
our examples that whenever the remesh is of
a nice shape the interpolating surface some-
how inherits this smoothness. This is proba-
bly due to the energy minimizing properties
of interpolating cubic B-splines. So instead
of applying rather complicated fairing func-
tionals to the approximating surface we can
consider the discrete and therefore much sim-
pler problem of smoothing the quadrilateral
remesh Q3.



Figure 9: Shape preserving parametrization (left), most isometric parametrization (center) and
two-dimensional remesh (right) of the data set in Fig. 8.

5 Examples

In this section we show and discuss some re-
sults of the methods explained above. Fig. 8
shows a technical data set with 4.100 vertices
and 7.938 triangles that has been remeshed
with a regular quadrilateral mesh with 80×48
facets and reconstructed with a tensor prod-
uct B-spline surface with 4.233 control points.

In the first step of the reconstruction pro-
cess we have computed and compared two
different parametrizations of the given trian-
gular mesh: the shape preserving and the
most isometric parametrization (see Fig. 9).
Both parametrizations lead to very similar
results but we preferred the latter one, de-
spite the fact that its computation is more
expensive. Since the boundary vertices are
not fixed, the most isometric parametrization
is able to reduce the distortion of the in-
flation and the deflation function especially
near the boundary, as we can see in Fig. 10,
where a part of the two corresponding three-

Figure 10: Comparison of the remeshes gen-
erated with shape preserving (left) and most
isometric parametrization (right).

dimensional remeshes Q3 is shown. The in-
flation function defined by the shape pre-
serving parametrization tends to deform the
square faces of the two-dimensional remesh
Q2 to rhombuses while the most isometric
parametrization preserves the quadratic shape
almost entirely.

In the second step we have performed dif-
ferent variants of the two-dimensional remesh-
ing algorithm. The simplest remesh of the
shape preserving parametrization is a reg-
ularly spaced rectangular grid, but Fig. 11
shows that the inflation function can modify
the size of the faces and generates quite differ-
ently sized quadrilaterals in the final remesh
Q3. This effect can be compensated by apply-
ing the modified umbrella operator.

Finally, the two-dimensional remesh of the
most isometric parametrization (see Fig. 9)
was used for generating the three-dimensional
remesh in Fig. 8 whose vertices served as inter-
polation points for the surface reconstruction
algorithm.

Figure 11: Comparison of the remeshes gen-
erated without smoothing (top) and with the
modified umbrella operator (bottom).



Figure 12: Surface reconstruction of the mannequin head. Top row: original mesh T3 shaded
(left) and as wireframe (center), most isometric parametrization T2 (right). Bottom row: regular
quadrilateral remesh Q2 (left) and Q3 (center), reconstructed tensor product B-spline surface
(right).

We have also used the most isometric pa-
rametrization for remeshing the head data set
with 10.883 vertices and 21.680 triangles in
Fig. 12 and the face data set with 1.042 ver-
tices and 1.999 triangles in Fig. 13. The re-
meshes consist of 128×128 and 32×32 facets
resp. and the reconstructed surfaces therefore
have 17.161 and 1.225 control points resp.

6 Conclusion

We have presented a new method for convert-
ing unstructured triangle meshes with bound-
ary into regular quadrilateral meshes. Essen-
tial for this remeshing procedure is the con-

struction of a global parametrization of the
initial triangle mesh that minimizes geometric
distortion. This parametrization enables us to
circumvent the three-dimensional remeshing
problem and consider a two-dimensional prob-
lem instead. Mapping the two-dimensional
remesh of the parametrization back into R

3

results in the remesh of the initially given tri-
angle mesh, which can be further used for
a simple and efficient surface reconstruction
method.

Our future work will aim at improving the
surface reconstruction process. Up to now this
method does not provide any control of the
approximation error, so we will think about
an iterative process in which the interpolation



Figure 13: Surface reconstruction of a face data set. Top row: original mesh T3 shaded (left)
and as wireframe (center), most isometric parametrization T2 (right). Bottom row: regular
quadrilateral remesh Q2 (left) and Q3 (center), reconstructed tensor product B-spline surface
(right).

points are moved in dependency on the ap-
proximation error in order to decrease it after
solving the interpolation problem again. An-
other drawback of the current method are the
oscillations that occur along crest lines that
cross the tensor product structure of the sur-
face (cf. Fig. 8 and Fig. 12). This effect can be
avoided by previously detecting such feature
lines and aligning the edges of the remesh to
them. We will also extend the approach to
combine an adaptive remeshing method with
hierarchical spline surfaces which will reduce
the number of control points of the final sur-
face a lot.
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