
Algorithms and Data Structures

Exercises

Antonio Carzaniga

University of Lugano

Edition 1.2
January 2009

1

1. Answer the following questions on the big-oh notation.

(a) Explain what g(n) = O(f(n)) means. time: 5’

(b) Explain why the statement: “The running time of algorithm A is at least O(n2)” is mean-

ingless. time: 5’

(c) Given two functions f = Ω(logn) and g = O(n), consider the following statements. For

each statement, write whether it is true or false. For each false statement, write two

functions f and g that show a counter-example. time: 5’

• g(n) = O(f(n))
• f (n) = O(g(n))
• f (n) = Ω(log (g(n)))

• f (n) = Θ(log (g(n)))

• f (n)+ g(n) = Ω(logn)

(d) For each one of the following statements, write two functions f and g that satisfy the

given condition. time: 5’

• f (n) = O(g2(n))

• f (n) =ω(g(n))
• f (n) =ω(log (g(n)))

• f (n) = Ω(f (n)g(n))
• f (n) = Θ(g(n)) +Ω(g2(n)))

2. Write the pseudo-code of a function called findLargest that finds the largest number in an ar-

ray using a divide-and-conquer strategy. You may use a syntax similar to Java. Also, write the

time complexity of your algorithm in terms of big-oh notation. Briefly justify your complexity

analysis. time: 20’

int findLargest(int [] A) {

3. Illustrate the execution of the merge-sort algorithm on the array

A = 〈3,13,89,34,21,44,99,56,9〉

For each fundamental iteration or recursion of the algorithm, write the content of the array.

Assume the algorithm performs an in-place sort. time: 20’

4. Consider the array A = 〈29,18,10,15,20,9,5,13,2,4,15〉.

(a) Does A satisfy the max-heap property? If not, fix it by swapping two elements. time: 5’

(b) Using array A (possibly corrected), illustrate the execution of the heap-extract-max al-

gorithm, which extracts the max element and then rearranges the array to satisfy the

max-heap property. For each iteration or recursion of the algorithm, write the content

of the array A. time: 15’

5. Consider the following binary search tree (BST).

24

9

3 15

1 4

(a) List all the possible insertion orders (i.e., permutations) of the keys that could have

produced this BST. time: 5’

(b) Draw the same BST after the insertion of keys: 6, 45, 32, 98, 55, and 69, in this order. time: 5’

(c) Draw the BST resulting from the deletion of keys 9 and 45 from the BST resulting from

question 5b. time: 5’

(d) Write at least three insertion orders (permutations) of the keys remaining in the BST

after question 5c that would produce a balanced tree (i.e., a minimum-height tree). time: 5’

6. Implement a function that returns the successor of a node in a binary search tree (the BST

stores integer keys). A successor of a node n is defined as the smallest key x in the BST such

that x is bigger than the value of n, or null if that does not exist. You may assume that the

BST does not contain duplicate keys. The signature of the function you have to implement

and the interface of the TreeNode class, which implements the BST, are given below. Note

that getLeft(), getRight(), and getParent() return null if the node does not have a left, a right

child, or is the root, respectively. time: 10’

interface TreeNode {

int getValue();

TreeNode getLeft();

TreeNode getRight();

TreeNode getParent();

}

/* Returns -1 if no successor exists */

int successor(TreeNode x) {

7. Consider a hash table that stores integer keys. The keys are 32-bit unsigned values, and are

always a power of 2. Give the minimum table size t and the hash function h(x) that takes a

key x and produces a number between 1 and t, such that no collision occurs. time: 10’

8. Explain why the time complexity of searching for elements in a hash table, where conflicts

are resolved by chaining, decreases as its load factor α decreases. Recall that α is defined as

the ratio between the total number of elements stored in the hash table and the number of

slots in the table.

9. For each statement below, write whether it is true or false. For each false statement, write a

counter-example. time: 10’

• f (n) = Θ(n)∧ g(n) = Ω(n)⇒ f (n)g(n) = Ω(n2)

• f (n) = Θ(1)⇒ nf (n) = O(n)
• f (n) = Ω(n)∧ g(n) = O(n2)⇒ g(n)/f (n) = O(n)
• f (n) = O(n2)∧ g(n) = O(n)⇒ f (g(n)) = O(n3)

• f (n) = O(logn) ⇒ 2f (n) = O(n)
• f = Ω(logn)⇒ 2f (n) = Ω(n)

10. Write tight asymptotic bounds for each one of the following definitions of f (n). time: 10’

• g(n) = Ω(n)∧ f (n) = g(n)2 +n3 ⇒ f (n) =
• g(n) = O(n2)∧ f (n) = n log (g(n)) ⇒ f (n) =
• g(n) = Ω(√n)∧ f (n) = g(n+ 216)⇒ f (n) =
• g(n) = Θ(n)∧ f (n) = 1+ 1/

√
g(n) ⇒ f (n) =

• g(n) = O(n)∧ f (n) = 1+ 1/
√
g(n)⇒ f (n) =

• g(n) = O(n)∧ f (n) = g(g(n)) ⇒ f (n) =

11. Write the ternary-search trie (TST) that represents a dictionary of the strings: “gnu” “emacs”

“gpg” “else” “gnome” “go” “eps2eps” “expr” “exec” “google” “elif” “email” “exit” “epstopdf” time: 10’

12. Answer the following questions.

(a) A hash table with chaining is implemented through a table of K slots. What is the

expected number of steps for a search operation over a set of N = K/2 keys? Briefly

justify your answers.

(b) What are the worst-case, average-case, and best-case complexities of insertion-sort, bub-

ble-sort, merge-sort, and quicksort?
time: 5’

13. Write the pseudo code of the in-place insertion-sort algorithm, and illustrate its execution on

the array

A = 〈7,17,89,74,21,7,43,9,26,10〉
Do that by writing the content of the array at each main (outer) iteration of the algorithm. time: 20’

14. Consider a binary tree containing N integer keys whose values are all less than K, and the

following Find-Prime algorithm that operates on this tree.

Find-Prime(T)

1 x ← Tree-Min(T)
2 while x 6= nil

3 do x ← Tree-Successor(x)
4 if Is-Prime(key(x))
5 then return x
6 return x

Is-Prime(n)

1 i ← 2

2 while i · i ≤ n
3 do if i divides n
4 then return false

5 i← i+ 1

6 return true

In case you don’t remember, these are the relevant binary-tree algorithms

Tree-Successor(x)

1 if right(x) 6= nil

2 return Tree-Minimum(right(x))
3 y ← parent(x)
4 while y 6= nil∧ x = right(y)
5 do x ← y
6 y ← parent(y)
7 return y

Tree-Minimum(x)

1 while left(x) 6= nil

2 do x ← left(x)
3 return x

Write the time complexity of Find-Prime. Justify your answer. time: 10’

15. Consider the following max-heap

H = 〈37,12,30,10,3,9,20,3,7,1,1,7,5〉

Write the exact output of the following Extract-All algorithm run on H

Extract-All(H)

1 while heap-size(H) > 0

2 do Heap-Extract-Max(H)
3 for i← 1 to heap-size(H)
4 do output H[i]
5 output “.” end-of-line

Heap-Extract-Max(H)

1 if heap-size(H) > 0

2 then k← H[1]
3 H[1]← H[heap-size(H)]
4 heap-size(H)← heap-size(H)− 1

5 Max-Heapify(H)

6 return k

time: 20’

16. Develop an efficient in-place algorithm called Partition-Even-Odd(A) that partitions an ar-

ray A in even and odd numbers. The algorithm must terminate with A containing all its even

elements preceding all its odd elements. For example, for input A = 〈7,17,74,21,7,9,26,10〉,
the result might be A = 〈74,10,26,17,7,21,9,7〉. Partition-Even-Odd must be an in-place

algorithm, which means that it may use only a constant memory space in addition to A. In

practice, this means that you may not use another temporary array.

(a) Write the pseudo-code for Partition-Even-Odd. time: 20’

(b) Characterize the complexity of Partition-Even-Odd. Briefly justify your answer. time: 10’

(c) Formalize the correctness of the partition problem as stated above, and prove that

Partition-Even-Odd is correct using a loop-invariant. time: 20’

(d) If the complexity of your algorithm is not already linear in the size of the array, write a

new algorithm Partition-Even-Odd-Optimal with complexity O(N) (with N = |A|). time: 20’

17. The binary string below is the title of a song encoded using Huffman codes.

0011000101111101100111011101100000100111010010101

Given the letter frequencies listed in the table below, build the Huffman codes and use them to

decode the title. In cases where there are multiple “greedy” choices, the codes are assembled

by combining the first letters (or groups of letters) from left to right, in the order given in the

table. Also, the codes are assigned by labeling the left and right branches of the prefix/code

tree with ‘0’ and ‘1’, respectively.

letter a h v w ‘ ’ e t l o

frequency 1 1 1 1 2 2 2 3 3

time: 20’

18. Consider the text and pattern strings:

text: momify my mom please

pattern: mom

Use the Boyer-Moore string-matching algorithm to search for the pattern in the text. For each

character comparison performed by the algorithm, write the current shift and highlight the

character position considered in the pattern string. Assume that indexes start from 0. The

following table shows the first comparison as an example. Fill the rest of the table. time: 10’

n. shift m o m i f y m y m o m p l e a s e

1 0 m o m

2

.

19. You wish to create a database of stars. For each star, the database will store several megabytes

of data. Considering that your database will store billions of stars, choose the data structure

that will provide the best performance. With this data structure you should be able to find,

insert, and delete stars. Justify your choice. time: 10’

20. You are given a set of persons P and their friendship relation R. That is, (a, b) ∈ R iff a is

a friend of b. You must find a way to introduce person x to person y through a chain of

friends. Model this problem with a graph and describe a strategy to solve the problem. time: 10’

21. Answer the following questions

(a) Explain what f (n) = Ω(g(n)) means. time: 5’

(b) Explain what kind of problems are in the P complexity class. time: 5’

(c) Explain what kind of problems are in the NP complexity class. time: 5’

(d) Explain what it means for problem A to be polynomially-reducible to problem B. time: 5’

(e) Write true, false, or unknown depending on whether the assertions below are true, false,

or we do not know. time: 5’

• P ⊆ NP

• NP ⊆ P

• n! = O(n100)

• √n = Ω(logn)

• 3n2 + 1
n + 4 = Θ(n2)

(f) Consider the exact change problem characterized as follows. Input: a multiset of values

V = {v1, v2, . . . , vn} representing coins and bills in a cash register; a value X; Output:

1 if there exists a subset of V whose total value is equal to X, or 0 otherwise. Is the

exact-change problem in NP? Justify your answer. time: 5’

22. A thief robbing a gourmet store finds n pieces of precious cheeses. For each piece i, vi
designates its value andwi designates its weight. Considering thatW is the maximum weight

the robber can carry, and considering that the robber may take any fraction of each piece,

you must find the quantity of each piece the robber must take to maximize the value of the

robbery. time: 20’

(a) Devise an algorithm that solves the problem using a greedy or dynamic programming

strategy.

(b) Prove the problem exhibits an optimal substructure. Moreover, if you used a greedy

strategy, show that the greedy choice property holds for your algorithm. (Hint: the

greedy-choice property holds iff every greedy choice is contained in an optimal solution;

the optimization problem exhibits an optimal substructure iff an optimal solution to the

problem contains within it optimal solutions to subproblems.)

(c) Compute the time complexity of your solution.

/* Outputs the quantity of each piece taken */

float[] knapSack(int[] v, int[] w, int W) {

23. You are in front of a stack of pancakes of different diameter. Unfortunately, you cannot eat

them unless they are sorted according to their size, with the biggest one at the bottom. To

sort them, you are given a spatula that you can use to split the stack in two parts and then

flip the top part of the stack. Write the pseudo-code of a function sortPancakes that sorts

the stack. The i-th element of array pancakes contains the diameter of the i-th pancake,

counting from the bottom. The sortPancakes algorithm can modify the stack only through

the spatulaFlip function whose interface is specified below.

(Hint: Notice that you can move a pancake at position x to position y , without modifying the

positions of the order of the other pancakes, using a sequence of spatula flips.) time: 20’

/* Flips over the stack of pancakes from position pos and returns the result */

int[] spatulaFlip(int pos, int[] pancakes);

int[] sortPancakes(int[] pancakes) {

24. The following matrix represents a directed graph over vertices a,b, c, d, e, f , g,h, i, j, k, ℓ.

Rows and columns represent the source and destination of edges, respectively.

a

b

c

d

e

f

g

h

i

j

k

ℓ

a b c d e f g h i j k ℓ

1 1

11

11

1

1 1

11

1 1

1 1

1

1

Sort the vertices in a reverse topological order using the depth-first search algorithm. (Hint: if

you order the vertices from left to right in reverse topological order, then all edges go from

right to left.) Justify your answer by showing the relevant data maintained by the depth-first

search algorithm, and by explaining how that can be used to produce a reverse topological

order. time: 15’

25. Answer the following questions on the complexity classes P an NP. Justify your answers.

(a) P ⊆ NP? time: 5’

(b) A problem Q is in P and there is a polynomial-time reduction from Q to Q′. What can

we say about Q′? Is Q′ ∈ P? Is Q′ ∈ NP? time: 5’

(c) Let Q be a problem defined as follows. Input: a set of numbers A = {a1, a2, . . . , aN} and

a number x; Output: 1 iff there are two values ai, ak ∈ A such that ai + ak = x. Is Q in

NP? Is Q in P? time: 5’

26. The subset-sum problem is defined as follows. Input: a set of numbers A = {a1, a2, . . . , aN}
and a number x; Output: 1 iff there is a subset of numbers in A that add up to x. Formally,

∃S ∈ A such that
∑
y∈S y = x. Write a dynamic-programming algorithm to solve the subset-

sum problem and informally analyze its complexity. time: 20’

27. Explain the idea of dynamic programming using the shortest-path problem as an example.

(The shortest path problem amounts to finding the shortest path in a given graph G = (V, E)
between two given vertices a and b.) time: 15’

28. Consider an initially empty B-Tree with minimum degree t = 3. Draw the B-Tree after the in-

sertion of the keys 27,33,39,1,3,10,7,200,23,21,20, and then after the additional insertion

of the keys 15,18,19,13,34,200,100,50,51. time: 10’

29. There are three containers whose sizes are 10 pints, 7 pints, and 4 pints, respectively. The 7-

pint and 4-pint containers start out full of water, but the 10-pint container is initially empty.

Only one type of operation is allowed: pouring the contents of one container into another,

stopping only when the source container is empty, or the destination container is full. Is

there a sequence of pourings that leaves exactly two pints in either the 7-pint or the 4-pint

container?

(a) Model this as a graph problem: give a precise definition of the graph involved (type

of the graph, labels on vertices, meaning of an edge). Provide the set of all reachable

vertices, identify the initial vertex and the goal vertices. (Hint: all vertices that satisfy

the condition imposed by the problem are reachable, so you don’t have to draw a graph.)

(b) State the specific question about this graph that needs to be answered?

(c) What algorithm should be applied to solve the problem? Justify your answer.
time: 15’

30. Write an algorithm called MoveToRoot(x, k) that, given a binary tree rooted at node x and

a key k, moves the node containing k to the root position and returns that node if k is in the

tree. If k is not in the tree, the algorithm must return x (the original root) without modifying

the tree. Use the typical notation whereby key(x) is the key stored at node x, left(x) and

right(x) are the left and right children of x, respectively, and parent(x) is x’s parent node. time: 15’

31. Given a sequence of numbers A = 〈a1, a2, . . . , an〉, an increasing subsequence is a sequence

ai1, ai2 , . . . , aik of elements of A such that 1 ≤ i1 < i2 < . . . < ik ≤ n, and such that ai1 <
ai2 < . . . < aik . You must find the longest increasing subsequence. Solve the problem using

dynamic programming.

(a) Define the subproblem structure and the solution of each subproblem. time: 5’

(b) Write an iterative algorithm that solves the problem. Illustrate the execution of the

algorithm on the sequence A = 〈2,4,5,6,7,9〉. time: 10’

(c) Write a recursive algorithm that solves the problem. Draw a tree of recursive calls for

the algorithm execution on the sequence A = 〈1,2,3,4,5〉. time: 10’

(d) Compare the time complexities of the iterative and recursive algorithms. time: 5’

32. One way to implement a disjoint-set data structure is to represent each set by a linked list.

The first node in each linked list serves as the representative of its set. Each node contains

a key, a pointer to the next node, and a pointer back to the representative node. Each list

maintains the pointers head, to the representative, and tail, to the last node in the list.

(a) Write the pseudo-code and analyze the time complexity for the following operations:

• Make-Set(x): creates a new set whose only member is x.

• Union(x,y): returns the representative of the union of the sets that contain x and

y .

• Find-Set(x): returns a pointer to the representative of the set containing x.

Note that x and y are nodes. time: 15’

(b) Illustrate the linked list representation of the following sets:

• {c,a,d, b}
• {e, g, f }
• Union(d, g)

time: 5’

33. Explain what it means for a hash function to be perfect for a given set of keys. Consider the

hash function h(x) = x mod m that maps an integer x to a table entry in {0,1, . . .m − 1}.
Find an m ≤ 12 such that h is a perfect hash function on the set of keys {0,6,9,12,22,31}. time: 10’

34. Draw the binary search tree obtained when the keys 1,2,3,4,5,6,7 are inserted in the given

order into an initially empty tree. What is the problem of the tree you get? Why is it a

problem? How could you modify the insertion algorithm to solve this problem. Justify your

answer. time: 10’

35. Consider the following array:

A = 〈4,33,6,90,33,32,31,91,90,89,50,33〉

(a) Is A a min-heap? Justify your answer by briefly explaining the min-heap property. time: 10’

(b) If A is a min-heap, then extract the minim value and then rearrange the array with the

min-heapify procedure. In doing that, show the array at every iteration of min-heapify.

If A is not a min-heap, then rearrange it to satisfy the min-heap property. time: 10’

36. Write the pseudo-code of the insertion-sort algorithm. Illustrate the execution of the algo-

rithm on the array A = {3, 13, 89, 34, 21, 44, 99, 56, 9}, writing the intermediate values of A
at each iteration of the algorithm. time: 20’

37. Encode the following sentence with a Huffman code

Common sense is the collection of prejudices acquired by age eighteen

Write the complete construction of the code. time: 20’

38. Consider the text and query strings:

text: It ain’t over till it’s over.

query: over

Use the Boyer-Moore string-matching algorithm to search for the query in the text. For each

character comparison performed by the algorithm, write the current shift and highlight the

character position considered in the query string. Assume that indexes start from 0. The

following table shows the first comparison as an example. Fill the rest of the table. time: 10’

n. shift I t a i n ’ t o v e r t i l l i t ’ s o v e r .

1 0 o v e r

2

...

39. Briefly answer the following questions

(a) What does f (n) = Θ(g(n)) mean? time: 5’

(b) What kind of problems are in the P class? Give an example of a problem in P . time: 5’

(c) What kind of problems are in the NP class? Give an example of a problem in NP . time: 5’

(d) What does it mean for a problem A to be reducible to a problem B? time: 5’

40. For each of the following assertions, write “true,” “false,” or “?” depending on whether the

assertion is true, false, or it may be either true or false. time: 10’

(a) P ⊆ NP
(b) The knapsack problem is in P

(c) The minimal spanning tree problem is in NP

(d) n! = O(n100)

(e)
√
n = Ω(log(n))

(f) insertion-sort performs like quicksort on an almost sorted sequence

41. An application must read a long sequence of numbers given in no particular order, and per-

form many searches on that sequence. How would you implement that application to mini-

mize the overall time-complexity? Write exactly what algorithms you would use, and in what

sequence. In particular, write the high-level structure of a read function, to read and store

the sequence, and a find function too look up a number in the sequence. time: 10’

42. Write an algorithm that takes a set of (x,y) coordinates representing points on a plane,

and outputs the coordinates of two points with the maximal distance. The signature of the

algorithm is Maximal-Distance(X, Y), where X and Y are two arrays of the same length

representing the x and y coordinates of each point, respectively. Also, write the asymptotic

complexity of Maximal-Distance. Briefly justify your answer. time: 10’

43. A directed tree is represented as follows: for each vertex v, first-child[v] is either the first

element in a list of child-vertices, or nil if v is a leaf. For each vertex v, next-sibling[v] is the

next element in the list of v’s siblings, or nil if v is the last element in the list. For example,

the arrays on the left represent the tree on the right:

v 1 2 3 4 5 6 7 8 9

first-child 2 4 6 nil nil nil nil nil nil

next-sibling nil 3 9 5 nil 7 8 nil nil
4 5 6 7 8

92 3

1

(a) Write two algorithms, Max-Depth(root) and Min-Depth(root), that, given a tree, return

the maximal and minimal depth of any leaf vertex, respectively. (E.g., the results for the

example tree above are 2 and 1, respectively.) time: 15’

(b) Write an algorithm Depth-First-Order(root) that, given a tree, prints the vertices in

depth-first visitation order, such that a vertices is always preceded by all its children

(e.g., the result for the example tree above is 4,5,2,6,7,8,3,9,1). time: 10’

(c) Write the asymptotic complexities of Max-Depth, Min-Depth, and Depth-First-Order.

Briefly justify your answers. time: 5’

44. Write an algorithm called In-Place-Sort(A) that takes an array of numbers, and sorts the

array in-place. That is, using only a constant amount of extra memory. Also, give an informal

analysis of the asymptotic complexity of your algorithm. time: 10’

45. Given a sequence A = 〈a1, . . . , an〉 of numbers, the zero-sum-subsequence problem amounts

to deciding whether A contains a subsequence of consecutive elements ai, ai+1, . . . , ak, with

1 ≤ i ≤ k ≤ n, such that ai + ai+1 + · · · + ak = 0. Model this as a dynamic-programming

problem and write a dynamic-programming algorithm Zero-Sum-Sequence(A) that, given an

array A, returns true if A contains a zero-sum subsequence, or false otherwise. Also, give

an informal analysis of the complexity of Zero-Sum-Sequence. time: 30’

46. Give an example of a randomized algorithm derived from a deterministic algorithm. Explain

why there is an advantage in using the randomized variant. time: 10’

47. Implement the Ternary-Tree-Search(x, k) algorithm that takes the root of a ternary tree

and returns the node containing key k. A ternary tree is conceptually identical to a binary

tree, except that each node x has two keys, key1(x) and key2(x), and three links to child

nodes, left(x), center(x), and right(x), such that the left, center, and right subtrees contains

keys that are, respectively, less than key1(x), between key1(x) and key2(x), and greater than

key2(x). Assume there are no duplicate keys. Also, assuming the tree is balanced, what is

the asymptotic complexity of the algorithm? time: 10’

48. Answer the following questions. Briefly justify your answers.

(a) A hash table that uses chaining has M slots and holds N keys. What is the expected

complexity of a search operation? time: 5’

(b) The asymptotic complexity of algorithm A is Ω(N logN), while that of B is Θ(N2). Can

we compare the two algorithms? If so, which one is asymptotically faster? time: 5’

(c) What is the difference between “Las Vegas” and “Monte Carlo” randomized algorithms? time: 5’

(d) What is the main difference between the Knuth-Morris-Pratt algorithm and Boyer-Moore

string-matching algorithms in terms of complexity? Which one as the best worst-case

complexity? time: 5’

49. A ternary search trie (TST) is used to implement a dictionary of strings. Write the TST cor-

responding to the following set of strings: “doc” “fun” “algo” “cat” “dog” “data” “car” “led”

“function”. Assume the strings are inserted in the given order. Use ‘#’ as the terminator

character. time: 10’

50. The following declarations define a ternary search trie in C and Java, respectively:

struct TST {

char value;

struct TST * higher;

struct TST * lower;

struct TST * equal;

};

void print(const struct TST * t);

public class TST {

byte value;

TST higher;

TST lower;

TST equal;

void print() {/* ... */}

};

The TST represents a dictionary of byte strings. The print method must output all the strings

stored in the given TST, in alphabetical order. Assume the terminator value is 0. Write an

implementation of the print method, either in C or in Java. You may assume that the TST

contains strings of up to 100 characters. (Hint: store the output strings in a static array of

characters.) time: 20’

51. Consider quick-sort as an in-place sorting algorithm.

(a) Write the pseudo-code using only swap operations to modify the input array. time: 10’

(b) Apply the algorithm of exercise 51a to the array A = 〈8,2,12,17,4,8,7,1,12〉. Write the

content of the array after each swap operation. time: 10’

52. Consider this minimal vertex cover problem: given a graph G = (V, E), find a minimal set of

vertices S such that for every edge (u,v) ∈ E, u or v (or both) are in S.

(a) Model minimal vertex cover as a dynamic-programming problem. Write the pseudo-code

of a dynamic-programming solution. time: 15’

(b) Do you think that your model of minimal vertex cover admits a greedy choice? Try at

least one meaningful greedy strategy. Show that it does not work, giving a counter-

example graph for which the strategy produces the wrong result. (Hint: one meaningful

strategy is to choose a maximum-degree vertex first. The degree of a vertex is the number

of its incident edges.) time: 5’

53. The graph G = (V, E) represents a social network in which each vertex represents a person,

and an edge (u,v) ∈ E represents the fact that u and v know each other. Your problem is to

organize the largest party in which nobody knows each other. This is also called the maximal

independent set problem. Formally, given a graph G = (V, E), find a set of vertices S of

maximal size in which no two vertices are adjacent. (I.e., for all u ∈ S and v ∈ S, (u,v) ∉ E.)

(a) Formulate a decision variant of maximal independent set. Say whether the problem is in

NP, and briefly explain what that means. time: 10’

(b) Write a verification algorithm for the maximal independent set problem. This algorithm,

called TestIndependentSet(G, S), takes a graph G represented through its adjacency

matrix, and a set S of vertices, and returns true if S is a valid independent set for G. time: 10’

54. A Hamilton cycle is a cycle in a graph that touches every vertex exactly once. Formally, in G =
(V, E), an ordering of all vertices H = v1, v2, . . . , vn forms a Hamilton cycle if (vn, v1) ∈ E,

and (vi, vi+1) ∈ E for all i between 1 and n−1. Deciding whether a given graph is Hamiltonian

(has a Hamilton cycle) is a well known NP-complete problem.

(a) Write a verification algorithm for the Hamiltonian graph problem. This algorithm, called

TestHamiltonCycle(G,H), takes a graph G represented through adjacency lists, and

an array of vertices H , and returns true if H is a valid Hamilton cycle in G. time: 10’

(b) Give the asymptotic complexity of your implementation of TestHamiltonCycle. time: 5’

(c) Explain what it means for a problem to be NP-complete. time: 5’

55. Consider using a b-tree with minimum degree t = 2 as an in-memory data structure to imple-

ment dynamic sets.

(a) Compare this data structure with a red-black tree. Is this data structure better, worse,

or the same as a red-black tree in terms of time complexity? Briefly justify your answer.

In particular, characterize the complexity of insertion and search. time: 10’

(b) Write an iterative (i.e., non-recursive) search algorithm for this degree-2 b-tree. Re-

member that the data structure is in-memory, so there is no need to perform any disk

read/write operation. time: 10’

(c) Write the data structure after the insertion of keys 10,3,8,21,15,4,6,19,28,31, in this

order, and then after the insertion of keys 25,33,7,1,23,35,24,11,2,5. time: 10’

(d) Write the insertion algorithm for this degree-2 b-tree. (Hint: since the minimum degree

is fixed at 2, the insertion algorithm may be implemented in a simpler fashion without

all the loops of the full b-tree insertion.) time: 15’

56. Consider a breadth-first search (BFS) on the following graph, starting from vertex a.

a b c

d e i j

f g h ok

ℓ n z

m p

t

u yw

q

r

s v x

Write the two vectors π (previous) and d (distance), resulting from the BFS algorithm. time: 10’

