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◮ embody the divide-and-conquer search strategy
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Problem

◮ worst-case scenario is unlikely but still possible

◮ simply bad cases are evenmore probable
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Red-black-tree property

1. every node is either red or black

2. the root is black

3. every (NIL) leaf is black

4. if a node is red, then both its children are black

5. for every node x, each path from x to its descendant leaves has the same number of black
nodes bh(x) (the black-height of x)
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Implementation
12

5 18

2 9 15 19

4 13 17

◮ we use a common “sentinel” node to represent leaf nodes

◮ the sentinel is also the parent of the root node
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Red-Black Tree (3)

Implementation

◮ T represents the tree, which consists of a set of nodes

◮ T. root is the root node of tree T

◮ T.nil is the “sentinel” node of tree T

Nodes

◮ x.parent is the parent of node x

◮ x.key is the key stored in node x

◮ x. le� is the le� child of node x

◮ x. right is the right child of node x

◮ x.color ∈ {RED, BLACK} is the color of node x

k k = x.key
node x

x.parent

x. le� x. right



Height of a Red-Black Tree



Height of a Red-Black Tree

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most
2 log(n + 1).



Height of a Red-Black Tree

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most
2 log(n + 1).
Proof:

1. prove that [x : size(x) ≥ 2bh(x) − 1:



Height of a Red-Black Tree

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most
2 log(n + 1).
Proof:

1. prove that [x : size(x) ≥ 2bh(x) − 1:

proof: (by induction)

1.1 base case: x is a leaf, so size(x) = 0 and bh(x) = 0



Height of a Red-Black Tree

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most
2 log(n + 1).
Proof:

1. prove that [x : size(x) ≥ 2bh(x) − 1:

proof: (by induction)

1.1 base case: x is a leaf, so size(x) = 0 and bh(x) = 0

1.2 induction step: consider y1, y2, and x such that y1.parent = y2.parent = x; prove that

size(y1) ≥ 2bh (y1 ) − 1 ∧ size(y2) ≥ 2bh(y2 ) − 1⇒ size(x) ≥ 2bh (x) − 1



Height of a Red-Black Tree

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most
2 log(n + 1).
Proof:

1. prove that [x : size(x) ≥ 2bh(x) − 1:

proof: (by induction)

1.1 base case: x is a leaf, so size(x) = 0 and bh(x) = 0

1.2 induction step: consider y1, y2, and x such that y1.parent = y2.parent = x; prove that

size(y1) ≥ 2bh (y1 ) − 1 ∧ size(y2) ≥ 2bh(y2 ) − 1⇒ size(x) ≥ 2bh (x) − 1

proof:

size(x) = size(y1) + size(y2) + 1



Height of a Red-Black Tree

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most
2 log(n + 1).
Proof:

1. prove that [x : size(x) ≥ 2bh(x) − 1:

proof: (by induction)

1.1 base case: x is a leaf, so size(x) = 0 and bh(x) = 0

1.2 induction step: consider y1, y2, and x such that y1.parent = y2.parent = x; prove that

size(y1) ≥ 2bh (y1 ) − 1 ∧ size(y2) ≥ 2bh(y2 ) − 1⇒ size(x) ≥ 2bh (x) − 1

proof:

size(x) = size(y1) + size(y2) + 1 ≥ (2bh (y1 ) − 1) + (2bh(y2 ) − 1) + 1



Height of a Red-Black Tree

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most
2 log(n + 1).
Proof:

1. prove that [x : size(x) ≥ 2bh(x) − 1:

proof: (by induction)

1.1 base case: x is a leaf, so size(x) = 0 and bh(x) = 0

1.2 induction step: consider y1, y2, and x such that y1.parent = y2.parent = x; prove that

size(y1) ≥ 2bh (y1 ) − 1 ∧ size(y2) ≥ 2bh(y2 ) − 1⇒ size(x) ≥ 2bh (x) − 1

proof:

size(x) = size(y1) + size(y2) + 1 ≥ (2bh (y1 ) − 1) + (2bh(y2 ) − 1) + 1

Let bh(y) = bh(y1) = bh(y2), since bh(y1) = bh(y2) by rule 5



Height of a Red-Black Tree

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most
2 log(n + 1).
Proof:

1. prove that [x : size(x) ≥ 2bh(x) − 1:

proof: (by induction)

1.1 base case: x is a leaf, so size(x) = 0 and bh(x) = 0

1.2 induction step: consider y1, y2, and x such that y1.parent = y2.parent = x; prove that

size(y1) ≥ 2bh (y1 ) − 1 ∧ size(y2) ≥ 2bh(y2 ) − 1⇒ size(x) ≥ 2bh (x) − 1

proof:

size(x) = size(y1) + size(y2) + 1 ≥ (2bh (y1 ) − 1) + (2bh(y2 ) − 1) + 1

Let bh(y) = bh(y1) = bh(y2), since bh(y1) = bh(y2) by rule 5

Thus size(x) ≥ 2(2bh (y) − 1) + 1



Height of a Red-Black Tree

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most
2 log(n + 1).
Proof:

1. prove that [x : size(x) ≥ 2bh(x) − 1:

proof: (by induction)

1.1 base case: x is a leaf, so size(x) = 0 and bh(x) = 0

1.2 induction step: consider y1, y2, and x such that y1.parent = y2.parent = x; prove that

size(y1) ≥ 2bh (y1 ) − 1 ∧ size(y2) ≥ 2bh(y2 ) − 1⇒ size(x) ≥ 2bh (x) − 1

proof:

size(x) = size(y1) + size(y2) + 1 ≥ (2bh (y1 ) − 1) + (2bh(y2 ) − 1) + 1

Let bh(y) = bh(y1) = bh(y2), since bh(y1) = bh(y2) by rule 5

Thus size(x) ≥ 2(2bh (y) − 1) + 1 = 2bh(y)+1 − 1



Height of a Red-Black Tree

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most
2 log(n + 1).
Proof:

1. prove that [x : size(x) ≥ 2bh(x) − 1:

proof: (by induction)

1.1 base case: x is a leaf, so size(x) = 0 and bh(x) = 0

1.2 induction step: consider y1, y2, and x such that y1.parent = y2.parent = x; prove that

size(y1) ≥ 2bh (y1 ) − 1 ∧ size(y2) ≥ 2bh(y2 ) − 1⇒ size(x) ≥ 2bh (x) − 1

proof:

size(x) = size(y1) + size(y2) + 1 ≥ (2bh (y1 ) − 1) + (2bh(y2 ) − 1) + 1

Let bh(y) = bh(y1) = bh(y2), since bh(y1) = bh(y2) by rule 5

Thus size(x) ≥ 2(2bh (y) − 1) + 1 = 2bh(y)+1 − 1

Either bh(x) = bh(y), if color(x) = RED, or bh(x) = bh(y) + 1, if color(x) = BLACK



Height of a Red-Black Tree

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most
2 log(n + 1).
Proof:

1. prove that [x : size(x) ≥ 2bh(x) − 1:

proof: (by induction)

1.1 base case: x is a leaf, so size(x) = 0 and bh(x) = 0

1.2 induction step: consider y1, y2, and x such that y1.parent = y2.parent = x; prove that

size(y1) ≥ 2bh (y1 ) − 1 ∧ size(y2) ≥ 2bh(y2 ) − 1⇒ size(x) ≥ 2bh (x) − 1

proof:

size(x) = size(y1) + size(y2) + 1 ≥ (2bh (y1 ) − 1) + (2bh(y2 ) − 1) + 1

Let bh(y) = bh(y1) = bh(y2), since bh(y1) = bh(y2) by rule 5

Thus size(x) ≥ 2(2bh (y) − 1) + 1 = 2bh(y)+1 − 1

Either bh(x) = bh(y), if color(x) = RED, or bh(x) = bh(y) + 1, if color(x) = BLACK

Thus size(x) ≥ 2bh(x) − 1.



Height of a Red-Black Tree (2)

1. size(x) ≥ 2bh(x) − 1 (from previous page)



Height of a Red-Black Tree (2)

1. size(x) ≥ 2bh(x) − 1 (from previous page)

2. Since every red node has black children, in every path from x to a leaf node, at least half
the nodes are black



Height of a Red-Black Tree (2)

1. size(x) ≥ 2bh(x) − 1 (from previous page)

2. Since every red node has black children, in every path from x to a leaf node, at least half
the nodes are black, thus bh(x) ≥ h(x)/2



Height of a Red-Black Tree (2)

1. size(x) ≥ 2bh(x) − 1 (from previous page)

2. Since every red node has black children, in every path from x to a leaf node, at least half
the nodes are black, thus bh(x) ≥ h(x)/2

3. From steps 1 and 2, n = size(x) ≥ 2h(x)/2 − 1



Height of a Red-Black Tree (2)

1. size(x) ≥ 2bh(x) − 1 (from previous page)

2. Since every red node has black children, in every path from x to a leaf node, at least half
the nodes are black, thus bh(x) ≥ h(x)/2

3. From steps 1 and 2, n = size(x) ≥ 2h(x)/2 − 1, therefore

h ≤ 2 log(n + 1)



Height of a Red-Black Tree (2)

1. size(x) ≥ 2bh(x) − 1 (from previous page)

2. Since every red node has black children, in every path from x to a leaf node, at least half
the nodes are black, thus bh(x) ≥ h(x)/2

3. From steps 1 and 2, n = size(x) ≥ 2h(x)/2 − 1, therefore

h ≤ 2 log(n + 1)

A red-black tree works as a binary search tree for search, etc.

So, the complexity of those operations is T (n) = O(h), that is

T (n) = O(log n)

◮ which is also theworst-case complexity
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Red-Black Insertion

RB-INSERT(T, z) works as in a binary search tree

Except that it must preserve the red-black-tree property

1. every node is either red or black

2. the root is black

3. every (NIL) leaf is black

4. if a node is red, then both its children are black

5. for every node x, each path from x to its descendant leaves has the same number of black
nodes bh(x) (the black-height of x)

General strategy

1. insert z as in a binary search tree

2. color z red so as to preserve property 5

3. fix the tree to correct possible violations of property 4



RB-INSERT

RB-INSERT(T, z)

1 y = T.nil

2 x = T. root

3 while x , T.nil

4 y = x

5 if z.key < x.key

6 x = x. le�

7 else x = x. right

8 z.parent = y

9 if y == T.nil
10 T. root = z

11 else if z.key < y.key

12 y. le� = z

13 else y. right = z

14 z. le� = z. right = T.nil

15 z.color = RED

16 RB-INSERT-FIXUP(T, z)
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z’s parent is black, so no fixup needed
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z’s parent’s sibling is red

A black node can become red and transfer its black color to its two children

This may cause other red–red conflicts, so we iterate. . .

The root can change to blackwithout causing conflicts
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An in-line red–red conflicts can be resolved with a rotation plus a color switch
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A zig-zag red–red conflicts can be resolved with a rotation to turn it into an in-line
conflict, and then a rotation plus a color switch


