Red-Black Trees

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana
April 30, 2024

Outline

■ Red-black trees

Summary on Binary Search Trees

- Binary search trees
- embody the divide-and-conquer search strategy
- Search, Insert, Min, and Max are $O(h)$, where h is the height of the tree
- in general, $h(n)=\Omega(\log n)$ and $h(n)=O(n)$
- randomization can make the worst-case scenario $h(n)=n$ highly unlikely

Summary on Binary Search Trees

- Binary search trees
- embody the divide-and-conquer search strategy
- Search, Insert, Min, and Max are $O(h)$, where h is the height of the tree
- in general, $h(n)=\Omega(\log n)$ and $h(n)=O(n)$
- randomization can make the worst-case scenario $h(n)=n$ highly unlikely

■ Problem

- worst-case scenario is unlikely but still possible
- simply bad cases are even more probable

Red-Black Tree

Red-Black Tree

$$
\odot_{\odot}^{\circ} \circ
$$

Red-Black Tree

Red-Black Tree

- Red-black-tree property

Red-Black Tree

■ Red-black-tree property

1. every node is either red or black

Red-Black Tree

■ Red-black-tree property

1. every node is either red or black
2. the root is black

Red-Black Tree

■ Red-black-tree property

1. every node is either red or black
2. the root is black
3. every (NIL) leaf is black

■ Red-black-tree property

1. every node is either red or black
2. the root is black
3. every (NIL) leaf is black
4. if a node is red, then both its children are black

- Red-black-tree property

1. every node is either red or black
2. the root is black
3. every (NIL) leaf is black
4. if a node is red, then both its children are black
5. for every node x, each path from x to its descendant leaves has the same number of black nodes $b h(x)$ (the black-height of x)

Implementation

Implementation

- we use a common "sentinel" node to represent leaf nodes
- Implementation

- we use a common "sentinel" node to represent leaf nodes
- the sentinel is also the parent of the root node

■ Implementation

- T represents the tree, which consists of a set of nodes

■ Implementation

- T represents the tree, which consists of a set of nodes
- T.root is the root node of tree T

■ Implementation

- T represents the tree, which consists of a set of nodes
- T.root is the root node of tree T
- T. nil is the "sentinel" node of tree T
- Implementation
- T represents the tree, which consists of a set of nodes
- T.root is the root node of tree T
- T.nil is the "sentinel" node of tree T

Nodes

- x.parent is the parent of node x
- x. key is the key stored in node x
- x. left is the left child of node x
- x.right is the right child of node x

- Implementation
- T represents the tree, which consists of a set of nodes
- T.root is the root node of tree T
- T.nil is the "sentinel" node of tree T

Nodes

- x.parent is the parent of node x
- x. key is the key stored in node x
- x. left is the left child of node x
- x.right is the right child of node x
- x.color $\in\{$ RED, BLACK $\}$ is the color of node x

Height of a Red-Black Tree

Lemma: the height $h(x)$ of a red-black tree with $n=\operatorname{size}(x)$ internal nodes is at most $2 \log (n+1)$.

Height of a Red-Black Tree

Lemma: the height $h(x)$ of a red-black tree with $n=\operatorname{size}(x)$ internal nodes is at most $2 \log (n+1)$.
Proof:

1. prove that $\forall x: \operatorname{size}(x) \geq 2^{\operatorname{bh}(x)}-1$:

Height of a Red-Black Tree

Lemma: the height $h(x)$ of a red-black tree with $n=\operatorname{size}(x)$ internal nodes is at most $2 \log (n+1)$.
Proof:

1. prove that $\forall x: \operatorname{size}(x) \geq 2^{\operatorname{bh}(x)}-1$:
proof: (by induction)
1.1 base case: x is a leaf, so $\operatorname{size}(x)=0$ and $b h(x)=0$

Height of a Red-Black Tree

Lemma: the height $h(x)$ of a red-black tree with $n=\operatorname{size}(x)$ internal nodes is at most $2 \log (n+1)$.
Proof:

1. prove that $\forall x: \operatorname{size}(x) \geq 2^{\operatorname{bh}(x)}-1$:
proof: (by induction)
1.1 base case: x is a leaf, so $\operatorname{size}(x)=0$ and $b h(x)=0$
1.2 induction step: consider y_{1}, y_{2}, and x such that y_{1}. parent $=y_{2}$. parent $=x$; prove that

$$
\operatorname{size}\left(y_{1}\right) \geq 2^{\operatorname{bh}\left(y_{1}\right)}-1 \wedge \operatorname{size}\left(y_{2}\right) \geq 2^{b h\left(y_{2}\right)}-1 \Rightarrow \operatorname{size}(x) \geq 2^{b h(x)}-1
$$

Height of a Red-Black Tree

Lemma: the height $h(x)$ of a red-black tree with $n=\operatorname{size}(x)$ internal nodes is at most $2 \log (n+1)$.

Proof:

1. prove that $\forall x: \operatorname{size}(x) \geq 2^{\operatorname{bh}(x)}-1$:
proof: (by induction)
1.1 base case: x is a leaf, so $\operatorname{size}(x)=0$ and $b h(x)=0$
1.2 induction step: consider y_{1}, y_{2}, and x such that y_{1}. parent $=y_{2}$. parent $=x$; prove that

$$
\operatorname{size}\left(y_{1}\right) \geq 2^{\operatorname{bh}\left(y_{1}\right)}-1 \wedge \operatorname{size}\left(y_{2}\right) \geq 2^{\operatorname{bh}\left(y_{2}\right)}-1 \Rightarrow \operatorname{size}(x) \geq 2^{\operatorname{bh}(x)}-1
$$

proof:

$$
\operatorname{size}(x)=\operatorname{size}\left(y_{1}\right)+\operatorname{size}\left(y_{2}\right)+1
$$

Height of a Red-Black Tree

Lemma: the height $h(x)$ of a red-black tree with $n=\operatorname{size}(x)$ internal nodes is at most $2 \log (n+1)$.

Proof:

1. prove that $\forall x: \operatorname{size}(x) \geq 2^{\operatorname{bh}(x)}-1$:
proof: (by induction)
1.1 base case: x is a leaf, so $\operatorname{size}(x)=0$ and $b h(x)=0$
1.2 induction step: consider y_{1}, y_{2}, and x such that y_{1}. parent $=y_{2}$. parent $=x$; prove that

$$
\operatorname{size}\left(y_{1}\right) \geq 2^{\operatorname{bh}\left(y_{1}\right)}-1 \wedge \operatorname{size}\left(y_{2}\right) \geq 2^{b h\left(y_{2}\right)}-1 \Rightarrow \operatorname{size}(x) \geq 2^{b h(x)}-1
$$

proof:

$$
\operatorname{size}(x)=\operatorname{size}\left(y_{1}\right)+\operatorname{size}\left(y_{2}\right)+1 \geq\left(2^{\operatorname{bh}\left(y_{1}\right)}-1\right)+\left(2^{b h\left(y_{2}\right)}-1\right)+1
$$

Height of a Red-Black Tree

Lemma: the height $h(x)$ of a red-black tree with $n=\operatorname{size}(x)$ internal nodes is at most $2 \log (n+1)$.

Proof:

1. prove that $\forall x: \operatorname{size}(x) \geq 2^{\operatorname{bh}(x)}-1$:
proof: (by induction)
1.1 base case: x is a leaf, so $\operatorname{size}(x)=0$ and $b h(x)=0$
1.2 induction step: consider y_{1}, y_{2}, and x such that y_{1}. parent $=y_{2}$. parent $=x$; prove that

$$
\operatorname{size}\left(y_{1}\right) \geq 2^{\operatorname{bh}\left(y_{1}\right)}-1 \wedge \operatorname{size}\left(y_{2}\right) \geq 2^{b h\left(y_{2}\right)}-1 \Rightarrow \operatorname{size}(x) \geq 2^{b h(x)}-1
$$

proof:
$\operatorname{size}(x)=\operatorname{size}\left(y_{1}\right)+\operatorname{size}\left(y_{2}\right)+1 \geq\left(2^{\text {bh }\left(y_{1}\right)}-1\right)+\left(2^{\text {bh }\left(y_{2}\right)}-1\right)+1$
Let $b h(y)=b h\left(y_{1}\right)=b h\left(y_{2}\right)$, since $b h\left(y_{1}\right)=b h\left(y_{2}\right)$ by rule 5

Height of a Red-Black Tree

Lemma: the height $h(x)$ of a red-black tree with $n=\operatorname{size}(x)$ internal nodes is at most $2 \log (n+1)$.

Proof:

1. prove that $\forall x: \operatorname{size}(x) \geq 2^{\operatorname{bh}(x)}-1$:
proof: (by induction)
1.1 base case: x is a leaf, so $\operatorname{size}(x)=0$ and $b h(x)=0$
1.2 induction step: consider y_{1}, y_{2}, and x such that y_{1}. parent $=y_{2}$. parent $=x$; prove that

$$
\operatorname{size}\left(y_{1}\right) \geq 2^{\operatorname{bh}\left(y_{1}\right)}-1 \wedge \operatorname{size}\left(y_{2}\right) \geq 2^{b h\left(y_{2}\right)}-1 \Rightarrow \operatorname{size}(x) \geq 2^{b h(x)}-1
$$

proof:
$\operatorname{size}(x)=\operatorname{size}\left(y_{1}\right)+\operatorname{size}\left(y_{2}\right)+1 \geq\left(2^{\operatorname{bh}\left(y_{1}\right)}-1\right)+\left(2^{\operatorname{bh}\left(y_{2}\right)}-1\right)+1$
Let $b h(y)=b h\left(y_{1}\right)=b h\left(y_{2}\right)$, since $b h\left(y_{1}\right)=b h\left(y_{2}\right)$ by rule 5
Thus size $(x) \geq 2\left(2^{\text {bh }(y)}-1\right)+1$

Height of a Red-Black Tree

Lemma: the height $h(x)$ of a red-black tree with $n=\operatorname{size}(x)$ internal nodes is at most $2 \log (n+1)$.

Proof:

1. prove that $\forall x: \operatorname{size}(x) \geq 2^{\operatorname{bh}(x)}-1$:
proof: (by induction)
1.1 base case: x is a leaf, so $\operatorname{size}(x)=0$ and $b h(x)=0$
1.2 induction step: consider y_{1}, y_{2}, and x such that y_{1}. parent $=y_{2}$. parent $=x$; prove that

$$
\operatorname{size}\left(y_{1}\right) \geq 2^{\operatorname{bh}\left(y_{1}\right)}-1 \wedge \operatorname{size}\left(y_{2}\right) \geq 2^{b h\left(y_{2}\right)}-1 \Rightarrow \operatorname{size}(x) \geq 2^{b h(x)}-1
$$

proof:
$\operatorname{size}(x)=\operatorname{size}\left(y_{1}\right)+\operatorname{size}\left(y_{2}\right)+1 \geq\left(2^{\text {bh }\left(y_{1}\right)}-1\right)+\left(2^{\text {bh }\left(y_{2}\right)}-1\right)+1$
Let $b h(y)=b h\left(y_{1}\right)=b h\left(y_{2}\right)$, since $b h\left(y_{1}\right)=b h\left(y_{2}\right)$ by rule 5
Thus size $(x) \geq 2\left(2^{b h(y)}-1\right)+1=2^{b h(y)+1}-1$

Height of a Red-Black Tree

Lemma: the height $h(x)$ of a red-black tree with $n=\operatorname{size}(x)$ internal nodes is at most $2 \log (n+1)$.

Proof:

1. prove that $\forall x: \operatorname{size}(x) \geq 2^{\operatorname{bh}(x)}-1$:
proof: (by induction)
1.1 base case: x is a leaf, so $\operatorname{size}(x)=0$ and $b h(x)=0$
1.2 induction step: consider y_{1}, y_{2}, and x such that y_{1}. parent $=y_{2}$. parent $=x$; prove that

$$
\operatorname{size}\left(y_{1}\right) \geq 2^{\operatorname{bh}\left(y_{1}\right)}-1 \wedge \operatorname{size}\left(y_{2}\right) \geq 2^{\operatorname{bh}\left(y_{2}\right)}-1 \Rightarrow \operatorname{size}(x) \geq 2^{b h(x)}-1
$$

proof:

$\operatorname{size}(x)=\operatorname{size}\left(y_{1}\right)+\operatorname{size}\left(y_{2}\right)+1 \geq\left(2^{\operatorname{bh}\left(y_{1}\right)}-1\right)+\left(2^{\text {bh }\left(y_{2}\right)}-1\right)+1$
Let $b h(y)=b h\left(y_{1}\right)=b h\left(y_{2}\right)$, since $b h\left(y_{1}\right)=b h\left(y_{2}\right)$ by rule 5
Thus size $(x) \geq 2\left(2^{b h(y)}-1\right)+1=2^{b h(y)+1}-1$
Either $b h(x)=b h(y)$, if color $(x)=$ RED, or $b h(x)=b h(y)+1$, if $\operatorname{color}(x)=$ BLACK

Height of a Red-Black Tree

Lemma: the height $h(x)$ of a red-black tree with $n=\operatorname{size}(x)$ internal nodes is at most $2 \log (n+1)$.

Proof:

1. prove that $\forall x: \operatorname{size}(x) \geq 2^{\operatorname{bh}(x)}-1$:
proof: (by induction)
1.1 base case: x is a leaf, so $\operatorname{size}(x)=0$ and $b h(x)=0$
1.2 induction step: consider y_{1}, y_{2}, and x such that y_{1}. parent $=y_{2}$. parent $=x$; prove that

$$
\operatorname{size}\left(y_{1}\right) \geq 2^{\operatorname{bh}\left(y_{1}\right)}-1 \wedge \operatorname{size}\left(y_{2}\right) \geq 2^{\operatorname{bh}\left(y_{2}\right)}-1 \Rightarrow \operatorname{size}(x) \geq 2^{b h(x)}-1
$$

proof:
$\operatorname{size}(x)=\operatorname{size}\left(y_{1}\right)+\operatorname{size}\left(y_{2}\right)+1 \geq\left(2^{\operatorname{bh}\left(y_{1}\right)}-1\right)+\left(2^{\text {bh }\left(y_{2}\right)}-1\right)+1$
Let $b h(y)=b h\left(y_{1}\right)=b h\left(y_{2}\right)$, since $b h\left(y_{1}\right)=b h\left(y_{2}\right)$ by rule 5
Thus size $(x) \geq 2\left(2^{b h(y)}-1\right)+1=2^{b h(y)+1}-1$
Either $b h(x)=b h(y)$, if color $(x)=$ RED, or $b h(x)=b h(y)+1$, if $\operatorname{color}(x)=$ BLACK
Thus size $(x) \geq 2^{\text {bh(}(x)}-1$.

Height of a Red-Black Tree (2)

1. $\operatorname{size}(x) \geq 2^{b h(x)}-1$ (from previous page)

Height of a Red-Black Tree (2)

1. $\operatorname{size}(x) \geq 2^{b h(x)}-1$ (from previous page)
2. Since every red node has black children, in every path from x to a leaf node, at least half the nodes are black

Height of a Red-Black Tree (2)

1. $\operatorname{size}(x) \geq 2^{b h(x)}-1$ (from previous page)
2. Since every red node has black children, in every path from x to a leaf node, at least half the nodes are black, thus $b h(x) \geq h(x) / 2$

Height of a Red-Black Tree (2)

1. $\operatorname{size}(x) \geq 2^{b h(x)}-1$ (from previous page)
2. Since every red node has black children, in every path from x to a leaf node, at least half the nodes are black, thus $b h(x) \geq h(x) / 2$
3. From steps 1 and $2, n=\operatorname{size}(x) \geq 2^{h(x) / 2}-1$

Height of a Red-Black Tree (2)

1. $\operatorname{size}(x) \geq 2^{b h(x)}-1$ (from previous page)
2. Since every red node has black children, in every path from x to a leaf node, at least half the nodes are black, thus $b h(x) \geq h(x) / 2$
3. From steps 1 and $2, n=\operatorname{size}(x) \geq 2^{h(x) / 2}-1$, therefore

$$
h \leq 2 \log (n+1)
$$

Height of a Red-Black Tree (2)

1. $\operatorname{size}(x) \geq 2^{b h(x)}-1$ (from previous page)
2. Since every red node has black children, in every path from x to a leaf node, at least half the nodes are black, thus $b h(x) \geq h(x) / 2$
3. From steps 1 and $2, n=\operatorname{size}(x) \geq 2^{h(x) / 2}-1$, therefore

$$
h \leq 2 \log (n+1)
$$

■ A red-black tree works as a binary search tree for search, etc.

■ So, the complexity of those operations is $T(n)=O(h)$, that is

$$
T(n)=O(\log n)
$$

- which is also the worst-case complexity

Rotation

Rotation

■ $x=$ RIGHT-ROTATE (x)

■ $x=$ RIGHT-ROTATE (x)

■ $x=$ Left-ROTATE (x)

Red-Black Insertion

■ RB-INSERT (T, z) works as in a binary search tree

Red-Black Insertion

■ RB-INSERT (T, z) works as in a binary search tree
■ Except that it must preserve the red-black-tree property

Red-Black Insertion

■ RB-Insert (T, z) works as in a binary search tree
■ Except that it must preserve the red-black-tree property

1. every node is either red or black
2. the root is black
3. every (NIL) leaf is black
4. if a node is red, then both its children are black
5. for every node x, each path from x to its descendant leaves has the same number of black nodes $b h(x)$ (the black-height of x)

Red-Black Insertion

■ RB-INSERT (T, z) works as in a binary search tree
■ Except that it must preserve the red-black-tree property

1. every node is either red or black
2. the root is black
3. every (NIL) leaf is black
4. if a node is red, then both its children are black
5. for every node x, each path from x to its descendant leaves has the same number of black nodes $b h(x)$ (the black-height of x)

- General strategy

Red-Black Insertion

■ RB-InSERT (T, z) works as in a binary search tree
■ Except that it must preserve the red-black-tree property

1. every node is either red or black
2. the root is black
3. every (NIL) leaf is black
4. if a node is red, then both its children are black
5. for every node x, each path from x to its descendant leaves has the same number of black nodes $b h(x)$ (the black-height of x)

- General strategy

1. insert z as in a binary search tree
2. color z red so as to preserve property 5
3. fix the tree to correct possible violations of property 4
```
RB-INSERT( \(T, z\) )
    \(y=T . n i l\)
    \(x=T\).root
    while \(x \neq T\).nil
        \(y=x\)
        if \(z\). key < x. key
        \(x=x\).left
        else \(x=x\).right
    z. parent \(=y\)
    if \(y==\) T.nil
    T. root \(=z\)
    else if \(z\). key < y. key
        \(y\). left \(=z\)
            else \(y\).right \(=z\)
        z.left \(=\) z.right \(=\) T.nil
        z.color = RED
    16 RB-InSERT-FixUP \((T, z)\)
```


Red-Black Insertion (2)

Red-Black Insertion (2)

$$
0_{0}^{0} \theta_{0}^{0} 0_{0}^{0}
$$

Red-Black Insertion (2)

Red-Black Insertion (2)

- z's parent is black, so no fixup needed

Red-Black Insertion (3)

Red-Black Insertion (3)

Red-Black Insertion (3)

$$
0_{\circ}^{\circ} \stackrel{\circ}{8} e_{\odot}
$$

$$
\rho_{0}^{\circ} 0_{0}^{\circ}
$$

$$
\stackrel{\sigma}{\circ} \stackrel{\theta}{\circ}
$$

Red-Black Insertion (3)

Red-Black Insertion (3)

Red-Black Insertion (3)

Red-Black Insertion (3)

Red-Black Insertion (3)

Red-Black Insertion (3)

Red-Black Insertion (3)

$$
0_{0}^{0}
$$

$$
\odot_{0}^{\circ} \odot 0_{0}^{\circ}
$$

Red-Black Insertion (3)

■ A black node can become red and transfer its black color to its two children

■ A black node can become red and transfer its black color to its two children
■ This may cause other red-red conflicts, so we iterate...

■ A black node can become red and transfer its black color to its two children
■ This may cause other red-red conflicts, so we iterate...
■ The root can change to black without causing conflicts

Red-Black Insertion (4)

Red-Black Insertion (4)

Red-Black Insertion (4)

Red-Black Insertion (4)

Red-Black Insertion (4)

Red-Black Insertion (4)

Red-Black Insertion (4)

Red-Black Insertion (4)

Red-Black Insertion (4)

- An in-line red-red conflicts can be resolved with a rotation plus a color switch

Red-Black Insertion (5)

Red-Black Insertion (5)

Red-Black Insertion (5)

Red-Black Insertion (5)

Red-Black Insertion (5)

Red-Black Insertion (5)

Red-Black Insertion (5)

Red-Black Insertion (5)

Red-Black Insertion (5)

Red-Black Insertion (5)

Red-Black Insertion (5)

Red-Black Insertion (5)

■ A zig-zag red-red conflicts can be resolved with a rotation to turn it into an in-line conflict, and then a rotation plus a color switch

