We'll consider the following language, the simply-typed lambda calculus extended with booleans.

Contexts

$$
\begin{aligned}
& \Gamma::=\emptyset \\
& \quad \mid \Gamma, x: \tau
\end{aligned}
$$

empty context
context extension
Expressions

$$
e::=x
$$

$\mid e_{1} e_{2}$
variable
function application
if e_{0} then e_{1} else e_{2}
| v
if
values
Values

$$
\begin{aligned}
& v::=\lambda x: \tau \cdot e \\
& \mid \text { true } \\
& \mid \text { false }
\end{aligned}
$$

function abstraction

Types

$$
\begin{aligned}
\tau::=\tau_{1} \rightarrow \tau_{2} & \text { function type } \\
& \mid \text { Bool }
\end{aligned}
$$

Call-by-value operational semantics:

$$
\overline{(\lambda x: \tau . e) v \longrightarrow e[x \mapsto v]} \text { (E-BETA) }
$$

$$
\frac{e_{1} \longrightarrow e_{1}^{\prime}}{e_{1} e_{2} \longrightarrow e_{1}^{\prime} e_{2}}(\text { EC-LEFT })
$$

$$
\frac{e_{2} \longrightarrow e_{2}^{\prime}}{v_{1} e_{2} \longrightarrow v_{1} e_{2}^{\prime}} \text { (EC-RIGHT) }
$$

Static semantics:

$$
\overline{\Gamma \vdash x: \Gamma(x)}(\mathrm{T}-\mathrm{VAR})
$$

$$
\begin{array}{lc}
\frac{\Gamma, x: \tau_{1} \vdash e: \tau_{2}}{\Gamma \vdash \lambda x: \tau_{1} \cdot e: \tau_{1} \rightarrow \tau_{2}}(\mathrm{~T}-\mathrm{ABS}) & \frac{\Gamma \vdash e_{1}: \tau_{1} \rightarrow \tau_{2} \quad \Gamma \vdash e_{2}: \tau_{1}}{\Gamma \vdash e_{1} e_{2}: \tau_{2}} \text { (T-APP) } \\
\overline{\Gamma \vdash \text { false : Bool }} \text { (T-FALSE) } & \overline{\Gamma \vdash \text { true : Bool }} \text { (T-TRUE) }
\end{array}
$$

We want to prove the type system is sound. The following treatment is by Andrew Wright and Matthias Felleisen. We can view evaluation as a partial function

$$
\text { eval }: \text { Expr } \rightharpoonup \text { Value } \cup\{\text { WRONG }\}
$$

eval maps an expression e to either value v or to WRONG, indicating a type error. The function is partial: the result is undefined if e does not terminate.

The simplest way to state a soundness property is that well-typed programs don't go WRONG:
Definition (Weak soundness). If $\vdash e: \tau$, then $\operatorname{eval}(e) \neq \mathrm{WRONG}$.
We use WRONG as shorthand for any expression e that has a type error. For example, true true or if ($\lambda x: \tau . e)$ then 0 else 1.

A stronger notion of soundness views a type τ as denoting a set of values V^{τ}. For instance, the type Bool denotes the set $V^{\text {Bool }}=\{$ false, true $\}$.

Definition (Strong soundness). If $\vdash e: \tau$, and $\operatorname{eval}(e)=a$, then $a \in V^{\tau}$.
The definition says that if a well-typed expression evaluates to an answer a, then a is a value of type τ. Strong soundness implies weak soundness because WRONG is not in any set V^{τ}.

Now, we can restate the definition of strong soundness purely syntactically by observing that

- $\operatorname{eval}(e)=a$ iff $e \longrightarrow^{*} a$
- if $a \neq$ WRONG, then a is a value v
- $v \in V^{\tau}$ iff $\vdash v: \tau$.

We need to be careful to say that expressions might not evaluate to a value. We thus define normal forms:
Definition (Normal forms). e is a normal form if there is no e^{\prime} such that $e \longrightarrow e^{\prime}$.
Note that all values are in normal form, and all "stuck" expressions are also in normal form.
We thus have the following theorem:
Theorem (Soundness). If $\vdash e: \tau$ and $e \longrightarrow^{*} e^{\prime}$ and e^{\prime} is in normal form, then e^{\prime} is a value v and $\vdash v: \tau$.
Note that the theorem assumes that e will evaluate to a normal form. It says nothing about expressions that diverge, that is, that go into infinite loops. This is okay. If an expression is going to get stuck, it will do so before going into an infinite loop. It cannot get stuck after an infinite loop because-being infinite-the loop will never terminate; talking about what happens after an infinite loop is meaningless.
To prove the theorem we show two properties: progress and type preservation. Progress states that a well-typed expression is either a value or it can take a step to another expression (i.e., is never "stuck"). Preservation states that if an expression e has a given type and it steps to another expression e^{\prime}, then e^{\prime} has the same type. Put together, if e is not a value, e must be able to take a step (i.e., it does not get "stuck") to another expression with the same type. Soundness follows immediately by induction on the number of steps taken.
The slogan is "well-typed programs do not get stuck."
Lemma (Progress). If $\vdash e: \tau$, then either e is a value v or there is an e^{\prime} such that $e \longrightarrow e^{\prime}$.
Proof. By structural induction on e. Consider e by cases.

- $e=x$. Vacuous (x is ill-typed in the empty environment).
- $e=$ true. Trivial (already a value).
- $e=$ false. Trivial (already a value).
- $e=\lambda x . e_{1}$. Trivial (already a value).
- $e=$ if e_{0} then e_{1} else e_{2}. Since \vdash if e_{0} then e_{1} else $e_{2}: \tau$, by T-IF, we have $\vdash e_{0}:$ Bool, $\vdash e_{1}: \tau$, and $\vdash e_{2}: \tau$. Since $\vdash e_{0}$: Bool, by the induction hypothesis either e_{0} is a value or e_{0} steps to e_{0}^{\prime}. If e_{0} is a value, there are three cases:
- $e_{0}=$ true. Then by E-IfTrue, $e^{\prime}=e_{1}$.
$-e_{0}=$ false. Similar to the previous case.
- $e_{0}=\lambda x$. e_{0}^{\prime}. In this case, $\vdash e_{0}: \tau_{0} \rightarrow \tau_{0}^{\prime}$, but we already have $\vdash e_{0}$: Bool. Therefore, this case cannot occur.

If e_{0} is not a value, then it must step to e_{0}^{\prime}. By EC-IF, $e^{\prime}=$ if e_{0}^{\prime} then e_{1} else e_{2}.

- $e=e_{1} e_{2}$. Since $\vdash e_{1} e_{2}: \tau$, by T-APP, we have $\vdash e_{1}: \tau_{2} \rightarrow \tau$, and $\vdash e_{2}: \tau_{2}$. Let's consider e_{1} and e_{2} by cases.
- If e_{1} is not a value, then by the induction hypothesis, there is an e_{1}^{\prime} such that $e_{1} \longrightarrow e_{1}^{\prime}$. By EC-LEFT, $e^{\prime}=e_{1}^{\prime} e_{2}$.
- If e_{1} is a value but e_{2} is not, then by the induction hypothesis, there is an e_{2}^{\prime} such that $e_{2} \longrightarrow e_{2}^{\prime}$. By EC-LEFT, $e^{\prime}=e_{1} e_{2}^{\prime}$.
- Finally, if both e_{1} and e_{2} are values, let's consider e_{1} by cases.
* $e_{1}=$ true. Then $\vdash e_{1}$: Bool. But we already have $\vdash e_{1}: \tau_{2} \rightarrow \tau$. Therefore, this case cannot occur.
* $e_{1}=$ false. Similar to the previous case.
* $e_{1}=\lambda x . e_{1}^{\prime}$. By E-BETA, $e^{\prime}=e_{1}^{\prime}\left[x \mapsto e_{2}\right]$.

Lemma (Preservation). If $\Gamma \vdash e: \tau$ and $e \longrightarrow e^{\prime}$, then $\Gamma \vdash e^{\prime}: \tau$.
Proof. By structural induction on e. Consider e by cases.

- $e=$ true or $e=$ false. Vacuous (a value; cannot take a step).
- $e=\lambda x . e_{1}$. Vacuous (a value; cannot take a step).
- $e=x$. Vacuous (cannot take a step).
- $e=$ if e_{0} then e_{1} else e_{2}. Since $\Gamma \vdash$ if e_{0} then e_{1} else $e_{2}: \tau$, by T-If, we have $\Gamma \vdash e_{0}$: Bool, $\Gamma \vdash e_{1}: \tau$, and $\Gamma \vdash e_{2}: \tau$. Since $e \longrightarrow e^{\prime}$ we have three cases:
- E-IfTrue. Then $e_{0}=$ true and $e^{\prime}=e_{1}$. By T-If we have the premise $\Gamma \vdash e_{1}: \tau$, so we're done.
- E-IfFAlSE. Similar to the previous case.
- EC-If. Then $e_{0} \longrightarrow e_{0}^{\prime}$ and $e^{\prime}=$ if e_{0}^{\prime} then e_{1} else e_{2}. Since $\Gamma \vdash e_{0}$: Bool, by the induction hypothesis we have $\Gamma \vdash e_{0}^{\prime}$: Bool. Thus, by T-IF, we can derive $\Gamma \vdash$ if e_{0}^{\prime} then e_{1} else $e_{2}: \tau$. Done.
- $e=e_{1} e_{2}$. Since $\vdash e_{1} e_{2}: \tau$, by T-APP, we have $\Gamma \vdash e_{1}: \tau_{2} \rightarrow \tau$, and $\Gamma \vdash e_{2}: \tau_{2}$. Since $e \longrightarrow e^{\prime}$ we have three cases:
- EC-LEFT. Then $e_{1} \longrightarrow e_{1}^{\prime}$ and $e^{\prime}=e_{1}^{\prime} e_{2}$. By the induction hypothesis $\Gamma \vdash e_{1}^{\prime}: \tau_{2} \rightarrow \tau$. Together with $\Gamma \vdash e_{2}: \tau_{2}$, by T-ApP, we can derive $\Gamma \vdash e_{1}^{\prime} e_{2}: \tau$.
- EC-Right. Similar to the previous case.
- E-Beta. We have $e_{1}=\lambda x: \tau_{2} . e_{1}^{\prime}$, and we know e_{2} is a value v, and $e^{\prime}=e_{1}^{\prime}[x \mapsto v]$. By T-Abs, we have $\Gamma, x: \tau_{2} \vdash e_{1}^{\prime}: \tau$ and by T-APP we have $\Gamma \vdash v: \tau_{2}$. We need to show that $\Gamma \vdash e_{1}^{\prime}[x \mapsto v]: \tau$. To show this, we use the substitution lemma below, which immediately gives us the desired result.

Lemma (Substitution preserves types). If $\Gamma, x: \tau^{\prime} \vdash e: \tau$ and $\Gamma \vdash v: \tau^{\prime}$, then $\Gamma \vdash e[x \mapsto v]: \tau$.
Proof. The proof is by induction on the height of the derivation of $\Gamma, x: \tau^{\prime} \vdash e: \tau$. Consider e by cases.

- $e=$ true or $e=$ false. Trivial.
- $e=y \neq x$. Trivial.
- $e=x$. Then $e[x \mapsto v]=v$ and $\tau=\tau^{\prime}$. By assumption $\Gamma \vdash v: \tau^{\prime}$. Done.
- $e=$ if e_{0} then e_{1} else e_{2}. By T-If, we have $\Gamma, x: \tau^{\prime} \vdash e_{0}:$ Bool, $\Gamma, x: \tau^{\prime} \vdash e_{1}: \tau$, and $\Gamma, x: \tau^{\prime} \vdash e_{2}: \tau$. By the induction hypothesis, we have: $\Gamma \vdash e_{0}[x \mapsto v]$: Bool, $\Gamma \vdash e_{1}[x \mapsto v]: \tau$, and $\Gamma \vdash e_{2}[x \mapsto v]: \tau$. Thus, we can derive $\Gamma \vdash$ if $e_{0}[x \mapsto v]$ then $e_{1}[x \mapsto v]$ else $e_{2}[x \mapsto v]: \tau$. Using the definition of substitution, we therefore have: $\Gamma \vdash\left(\right.$ if e_{0} then e_{1} else $\left.e_{2}\right)[x \mapsto v]: \tau$. Done.
- $e=e_{1} e_{2}$. Similar to the previous case.
- $e=\lambda y: \tau_{1} . e_{2}$. By T-ABS, $\tau=\tau_{1} \rightarrow \tau_{2}$. If $x=y$, then $e[x \mapsto v]=e$ and we're done. Otherwise, $e[x \mapsto v]=\left(\lambda y: \tau_{1} . e_{2}\right)[x \mapsto v]=\lambda y: \tau_{1} . e_{2}[x \mapsto v]$. By T-ABS, we have $\Gamma, x: \tau^{\prime}, y: \tau_{1} \vdash e_{2}: \tau_{2}$. Since $x \neq y$, we can rearrange the typing context and get $\Gamma, y: \tau_{1}, x: \tau^{\prime} \vdash e_{2}: \tau_{2}$. By the induction hypothesis, $\Gamma, y: \tau_{1} \vdash e_{2}[x \mapsto v]: \tau_{2}$. Applying T-ABS, we have $\Gamma \vdash \lambda y: \tau_{1} . e_{2}[x \mapsto v]: \tau_{1} \rightarrow \tau_{2}$. Done.

