
We’ll consider the following language, the simply-typed lambda calculus extended with booleans.

Contexts

Γ ::= ∅ empty context

| Γ, x : τ context extension

Expressions

e ::= x variable

| e1 e2 function application

| if e0 then e1 else e2 if

| v values

Values

v ::= λx : τ. e function abstraction

| true
| false

Types

τ ::= τ1 → τ2 function type

| Bool

Call-by-value operational semantics:

(λx : τ. e) v −→ e[x 7→ v]
(E-BETA)

e1 −→ e′1
e1 e2 −→ e′1 e2

(EC-LEFT)
e2 −→ e′2

v1 e2 −→ v1 e
′
2

(EC-RIGHT)

if true then e1 else e2 −→ e1
(E-IFTRUE)

if false then e1 else e2 −→ e2
(E-IFFALSE)

e0 −→ e′0
if e0 then e1 else e2 −→ if e′0 then e1 else e2

(EC-IF)

Static semantics:
Γ ` x : Γ(x)

(T-VAR)

Γ, x : τ1 ` e : τ2
Γ ` λx : τ1. e : τ1 → τ2

(T-ABS)
Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2
(T-APP)

Γ ` false : Bool
(T-FALSE)

Γ ` true : Bool
(T-TRUE)

We want to prove the type system is sound. The following treatment is by Andrew Wright and Matthias
Felleisen. We can view evaluation as a partial function

eval : Expr ⇀ Value ∪ {WRONG}

eval maps an expression e to either value v or to WRONG, indicating a type error. The function is partial:
the result is undefined if e does not terminate.

The simplest way to state a soundness property is that well-typed programs don’t go WRONG:

Definition (Weak soundness). If ` e : τ , then eval(e) 6= WRONG.

We use WRONG as shorthand for any expression e that has a type error. For example, true true or
if (λx : τ. e) then 0 else 1.

A stronger notion of soundness views a type τ as denoting a set of values V τ . For instance, the type Bool
denotes the set V Bool = {false, true}.

1



Definition (Strong soundness). If ` e : τ , and eval(e) = a, then a ∈ V τ .

The definition says that if a well-typed expression evaluates to an answer a, then a is a value of type τ .
Strong soundness implies weak soundness because WRONG is not in any set V τ .

Now, we can restate the definition of strong soundness purely syntactically by observing that

• eval(e) = a iff e −→∗ a

• if a 6= WRONG, then a is a value v

• v ∈ V τ iff ` v : τ .

We need to be careful to say that expressions might not evaluate to a value. We thus define normal forms:

Definition (Normal forms). e is a normal form if there is no e′ such that e −→ e′.

Note that all values are in normal form, and all “stuck” expressions are also in normal form.

We thus have the following theorem:

Theorem (Soundness). If ` e : τ and e −→∗ e′ and e′ is in normal form, then e′ is a value v and ` v : τ .

Note that the theorem assumes that e will evaluate to a normal form. It says nothing about expressions
that diverge, that is, that go into infinite loops. This is okay. If an expression is going to get stuck, it will do
so before going into an infinite loop. It cannot get stuck after an infinite loop because—being infinite—the
loop will never terminate; talking about what happens after an infinite loop is meaningless.

To prove the theorem we show two properties: progress and type preservation. Progress states that a
well-typed expression is either a value or it can take a step to another expression (i.e., is never “stuck”).
Preservation states that if an expression e has a given type and it steps to another expression e′, then e′ has
the same type. Put together, if e is not a value, e must be able to take a step (i.e., it does not get “stuck”)
to another expression with the same type. Soundness follows immediately by induction on the number of
steps taken.

The slogan is “well-typed programs do not get stuck.”

Lemma (Progress). If ` e : τ , then either e is a value v or there is an e′ such that e −→ e′.

Proof. By structural induction on e. Consider e by cases.

• e = x. Vacuous (x is ill-typed in the empty environment).

• e = true. Trivial (already a value).

• e = false. Trivial (already a value).

• e = λx. e1. Trivial (already a value).

• e = if e0 then e1 else e2. Since ` if e0 then e1 else e2 : τ , by T-IF, we have ` e0 : Bool, ` e1 : τ ,
and ` e2 : τ . Since ` e0 : Bool, by the induction hypothesis either e0 is a value or e0 steps to e′0. If e0
is a value, there are three cases:

– e0 = true. Then by E-IfTrue, e′ = e1.

– e0 = false. Similar to the previous case.

– e0 = λx. e′0. In this case, ` e0 : τ0 → τ ′0, but we already have ` e0 : Bool. Therefore, this case
cannot occur.

If e0 is not a value, then it must step to e′0. By EC-IF, e′ = if e′0 then e1 else e2.

• e = e1 e2. Since ` e1 e2 : τ , by T-APP, we have ` e1 : τ2 → τ , and ` e2 : τ2. Let’s consider e1 and e2
by cases.

– If e1 is not a value, then by the induction hypothesis, there is an e′1 such that e1 −→ e′1. By
EC-LEFT, e′ = e′1 e2.

– If e1 is a value but e2 is not, then by the induction hypothesis, there is an e′2 such that e2 −→ e′2.
By EC-LEFT, e′ = e1 e

′
2.

2



– Finally, if both e1 and e2 are values, let’s consider e1 by cases.

∗ e1 = true. Then ` e1 :Bool. But we already have ` e1 : τ2 → τ . Therefore, this case cannot
occur.

∗ e1 = false. Similar to the previous case.
∗ e1 = λx. e′1. By E-BETA, e′ = e′1[x 7→ e2].

Lemma (Preservation). If Γ ` e : τ and e −→ e′, then Γ ` e′ : τ .

Proof. By structural induction on e. Consider e by cases.

• e = true or e = false. Vacuous (a value; cannot take a step).

• e = λx. e1. Vacuous (a value; cannot take a step).

• e = x. Vacuous (cannot take a step).

• e = if e0 then e1 else e2. Since Γ ` if e0 then e1 else e2 : τ , by T-IF, we have Γ ` e0 : Bool,
Γ ` e1 : τ , and Γ ` e2 : τ . Since e −→ e′ we have three cases:

– E-IFTRUE. Then e0 = true and e′ = e1. By T-IF we have the premise Γ ` e1 : τ , so we’re done.

– E-IFFALSE. Similar to the previous case.

– EC-IF. Then e0 −→ e′0 and e′ = if e′0 then e1 else e2. Since Γ ` e0 : Bool, by the induction
hypothesis we have Γ ` e′0 : Bool. Thus, by T-IF, we can derive Γ ` if e′0 then e1 else e2 : τ .
Done.

• e = e1 e2. Since ` e1 e2 : τ , by T-APP, we have Γ ` e1 : τ2 → τ , and Γ ` e2 : τ2. Since e −→ e′ we have
three cases:

– EC-LEFT. Then e1 −→ e′1 and e′ = e′1 e2. By the induction hypothesis Γ ` e′1 : τ2 → τ . Together
with Γ ` e2 : τ2, by T-APP, we can derive Γ ` e′1 e2 : τ .

– EC-RIGHT. Similar to the previous case.

– E-BETA. We have e1 = λx : τ2. e
′
1, and we know e2 is a value v, and e′ = e′1[x 7→ v]. By T-ABS,

we have Γ, x :τ2 ` e′1 :τ and by T-APP we have Γ ` v :τ2. We need to show that Γ ` e′1[x 7→ v] :τ .
To show this, we use the substitution lemma below, which immediately gives us the desired
result.

Lemma (Substitution preserves types). If Γ, x : τ ′ ` e : τ and Γ ` v : τ ′, then Γ ` e[x 7→ v] : τ .

Proof. The proof is by induction on the height of the derivation of Γ, x : τ ′ ` e : τ . Consider e by cases.

• e = true or e = false. Trivial.

• e = y 6= x. Trivial.

• e = x. Then e[x 7→ v] = v and τ = τ ′. By assumption Γ ` v : τ ′. Done.

• e = if e0 then e1 else e2. By T-IF, we have Γ, x : τ ′ ` e0 : Bool, Γ, x : τ ′ ` e1 : τ , and Γ, x : τ ′ ` e2 : τ .
By the induction hypothesis, we have: Γ ` e0[x 7→ v] : Bool, Γ ` e1[x 7→ v] : τ , and Γ ` e2[x 7→ v] : τ .
Thus, we can derive Γ ` if e0[x 7→ v] then e1[x 7→ v] else e2[x 7→ v] : τ . Using the definition of
substitution, we therefore have: Γ ` (if e0 then e1 else e2)[x 7→ v] : τ . Done.

• e = e1 e2. Similar to the previous case.

• e = λy : τ1. e2. By T-ABS, τ = τ1 → τ2. If x = y, then e[x 7→ v] = e and we’re done. Otherwise,
e[x 7→ v] = (λy : τ1. e2)[x 7→ v] = λy : τ1. e2[x 7→ v]. By T-ABS, we have Γ, x : τ ′, y : τ1 ` e2 : τ2.
Since x 6= y, we can rearrange the typing context and get Γ, y : τ1, x : τ ′ ` e2 : τ2. By the induction
hypothesis, Γ, y : τ1 ` e2[x 7→ v] : τ2. Applying T-ABS, we have Γ ` λy : τ1. e2[x 7→ v] : τ1 → τ2. Done.

3


