
Programming Languages — Homework 7
Types

Due: Wednesday, 8 May 2013, 23:55

Recall the syntax and semantics of the call-by-value simply typed lambda calculus λ→:

Contexts

Γ ::= ∅ empty context

| Γ, x : τ context extension

Expressions

e ::= x variable

| e1 e2 function application

| v values

Values

v ::= λx : τ. e function abstraction

Types

τ ::= τ1 → τ2 function type

Operational semantics:

(λx : τ. e) v −→ e[x 7→ v]
(E-BETA)

e1 −→ e′1
e1 e2 −→ e′1 e2

(EC-LEFT)
e2 −→ e′2

v1 e2 −→ v1 e
′
2

(EC-RIGHT)

Static semantics:
Γ ` x : Γ(x)

(T-VAR)

Γ, x : τ1 ` e : τ2
Γ ` λx : τ1. e : τ1 → τ2

(T-ABS)
Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2
(T-APP)

1. [1 pt] Extend the operational semantics of λ→ with int and real literals, and the binary operations
+ and & (bitwise and).

e ::= . . .

| e1 + e2 addition

| e1 & e2 bitwise and

v ::= . . .

| n integer literals

| r real literals

τ ::= . . .

| int integer type

| real real type

The + operator is overloaded: it can be used with either int or real operands. If either operand
is real, the result of the operation should be real. If both operands are int, the result should be
int. The & operator is not overloaded: both of its operands must be ints. We’ll call the resulting

1



language λ→,int,real. You can assume there are “mathematical” operations + and & to implement the
semantics.

2. [1 pt] Write the static semantics of λ→,int,real, extending the semantics of λ→.

3. [1 pt] Show by drawing the derivation trees that the following λ→,int,real terms have the given types.

(a) f : int→ int ` f (3 & 4) : int

(b) f : int→ int ` λx : int. f (3 + x) : int→ int

4. [0.5 pts] Find all contexts Γ (containing only the three variables f, x, and y) under which the term
f x (5 + y) has type real.

5. [0.5 pts] Is there a context Γ and type τ such that Γ ` z z : τ? If so, give a typing derivation. If not,
prove that no such derivation exists.

6. [2 pts] Show that λ→,int,real satisfies the progress property: if e is a well-typed, closed term, i.e.,
` e : τ , then either e is a value v or there is an e′ such that and e −→ e′.

7. [1 pt] Suppose we add a “cast” operation with the following typing rules:
Γ ` e : τ

Γ ` (real) e : real
Γ ` e : τ

Γ ` (int) e : int

and the following evaluation rules:

(real) r −→ r (int) n −→ n

Show that progress does not hold in this extended language.

8. [1 pt] A record is a a value that maps names to values. They are similar to tuples except that the fields
are named. Let’s extend the above language with records, producing the language λ→,int,real,record.

e ::= . . .

| {x1 = e1, . . . , xn = en} record creation

| e.x field selection

| e1[x := e2] record update

| delete e.x field deletion

v ::= . . .

| {x1 = v1, . . . , xn = vn} record value

τ ::= . . .

| {x1 : τ1, . . . , xn : τn} record type

A record creation expression evaluates the fields left to right until the result is a record value. A
field selection expression e.x selects the value associated with the field x from a record value e.
The record update expression e1[x := e2] evaluates its subexpressions left to right and then returns
a copy of record e1 where the x field is changed to the value of e2. The record delete operation
delete e.x returns a copy of record e where field x has been removed.

Write the operational semantics for λ→,int,real,record.

9. [1 pt] Write the static semantics for λ→,int,real,record. There are (at least) two possible typing rules
for record updates: one where the type of the record cannot change and one where it can. Record
updates should not change the type of the record.

10. [1 pt] Extend the proof of progress from part 6 to prove progress for λ→,int,real,record.

Submission

1. Complete the survey linked from the course web page after completing this assignment.

2. Submit your code and solutions on Moodle by 23:55 on Wednesday, 8 May 2013. Include your name
in each file you submit.

2


