
Programming Languages — Homework 6
Parser combinators

Due: Wednesday, 17 April 2013, 23:55

1 Parser combinators in Java

Starting with the combinator library ParsersHW.java on the course web page, you’ll implement several
new combinators. For each combinator, write test cases to demonstrate that the parsers work correctly.

You should implement all your code for the first part in ParsersHW.java, adding a main method to test
your parser.

Note that Parsers.java is also on the web page. It contains more “junk” inserted during class. Do not
extend this code to implement your solutions.

1. Write a function static Parser<String> end() that returns a parser that succeeds only if the
input string is empty. That is, end().parse("") should succeed and end().parse("abc") should
fail without consuming any input.

2. Write a function static Parser<String> regex(String pattern) that returns a parser that ac-
cepts only strings matching the given regular expression. You can use classes in the java.util.regex
package.

3. One version of zeroOrMore (called zeroOrMore Broken in the code on the web) fails because it calls
itself recursively while building the parser:

this.then(this.zeroOrMore_Broken())
.map(ParsersHW.<A>cons())
.or(empty(Collections.<A> emptyList()));

We fixed this in class by introducing a new class, but this solution is rather unsatisfying.

The problem does not occur in Haskell, because function arguments are evaluated lazily. We can
simulate this by passing a thunk to then, which wraps the recursive call in another object.

Define an abstract class Thunk<A> with two methods: the abstract method compute performs the
actual computation, returning an A; the non-abstract method force calls compute but caches the
result so that subsequent calls to force do not call compute again.

Define a method lazyThen in Parser than is like then, but takes a Thunk<Parser<B>> instead. The
thunk should not be forced until needed. You will not be able to reuse the existing SequenceParser
to implement lazyThen.

Define the method zeroOrMore which fixes the problem in zeroOrMore Broken using lazyThen. Try
to have as few differences as possible with the implementation of zeroOrMore Broken.

4. Add the method oneOrMore to the Parser class. This should return a parser that accepts one or
more occurrences of the string parsed by the receiver (i.e., this).

Full credit will be given only if you implement the new parsers by combining existing parser combi-
nators. Your implementation should not explicitly create a subclass of Parser (including an anony-
mous subclass). Indeed, you should not have to deal directly with Result values at all.

5. Add the following two methods to the Parser class:

Parser<List<A>> zeroOrMore(Parser<?> sep)
Parser<List<A>> oneOrMore(Parser<?> sep)

1



These methods overload the existing methods of the same name but take an additional argument.
The zeroOrMore (resp., oneOrMore) methods should return a parser that accepts zero (one) or more
occurrences of the string parsed by the receiver (i.e., this), each of which is separated by the string
parsed by sep. For example, if integer is a Parser<Integer> that accepts integer literals, and comma
is a parser that accepts the comma character, then integer.zeroOrMore(comma) should accept a
comma-separated list of integers. The type of this parser should be Parser<List<Integer>>. The
separator is parsed, but its result is discarded.

Full credit will be given only if you implement the new parsers by combining existing parser combi-
nators. Your implementation should not explicitly create a subclass of Parser (including an anony-
mous subclass). Indeed, you should not have to deal directly with Result values at all.

6. The parser implementation we’ve built is rather inefficient. When a branch of an or fails, the parser
backtracks to try the other branch. This can duplicate work: for example, p.then(q).or(p.then(r))
will invoke the p parser twice if p is successful and q fails.

To address this, we can add memoization to the parser. That is, results are cached so that if the
parser is invoked more than once on the same input, the previous result is returned immediately
rather than rerunning the parser.

Add a method Parser<A> memo() to the Parser class which returns a parser that behaves the same
as this except it memoizes its results.

2 Parsing dates

The Unix date command outputs the date and time as follows:

Thu Apr 11 00:09:59 CEST 2013

Write a Parser<java.util.Date> that parses one of these date strings and returns a java.util.Date.

Implement a main method that reads a text from standard input, and for each line uses the parser to build
a Date object d from that line, and then prints d.toString(). If the line text is not contain a legal date,
print “fail” for that line.

You should use the parser combinators defined ParsersHW.java, but implement a new main method in a
separate class ParseDate in its own file.

Submission

1. Complete the survey linked from the course web page after completing this assignment.

2. Submit your code and solutions on Moodle by 23:55 on Wednesday, 17 April 2013. Include your
name in each file you submit.

2


	Parser combinators in Java
	Parsing dates

