
Programming Languages — Homework 3
Operational semantics

Due: Thursday, 14 March 2013, 08:30

Several problems in this assignment use the small-step operational semantics for IMP, given on the next
page.

1. [3 pts] Evaluation of while. Given the statement

i = 1; k = 0; while i < 3 do (i := i + 1; k := k + i)

show through a sequence of derivations of individual evaluation steps how this expression is evalu-
ated to a configuration σ, pass starting with a store σ0. Show the resulting store σ.

2. [3 pts] Auto-increment. Suppose we add an auto-increment expression to IMP. Given a variable x
containing an integer value, the expression x++ increments x by 1, updating the store, and evaluates
to the previous value of x.

(a) Since expressions can now modify the store, the form of the evaluation relation for expressions
must change to include the updated store. The evaluation judgments now look like:

σ, e −→ σ′, e′

Show how the inference rules SC-ASN and EC-NOT change.

(b) Write inference rules for the small-step operational semantics for the new expression x++. Note:
you should not specify the behavior of ++ on boolean expressions.

3. [4 pts] Expression evaluation is deterministic.

(a) Using the operational semantics of IMP on the next page—not your modified semantics above,
prove by structural induction that expression evaluation is deterministic. That is, prove that for
all expressions e (both arithmetic and boolean) and all stores σ if σ ` e −→ e′ and σ ` e −→ e′′,
then e′ = e′′. You need not prove that evaluation of statements s is deterministic.

(b) Do the changes you made to the semantics in question 2 above change whether or not the
language is deterministic? Argue why or why not. You need not do a full proof.

Submission

1. Complete the survey linked from the course web page after completing this assignment.

2. Submit a PDF on Moodle by the beginning of class on 14 March 2013. Include your name in the file.
OR submit your solutions on paper in class on 14 March.

1

IMP

s ::= pass | x := a | s1; s2 | if b then s1 else s2 | while b do s statements

a ::= x | n | a1 + a2 arithmetic expressions

b ::= true | false | a1 < a2 | b1 and b2 | not b boolean expressions

Statement evaluation is defined by judgments of the form σ, s −→ σ′, s′ (“s in store σ reduces to s′ in σ′”).
Evaluation halts in the configuration σ, pass. Note that the language is restricted syntactically to ensure
that variables contain only integers. A store σ is a function from variables x to values n. σ[x 7→ n] is the
store that maps x to n and y (6= x) to σ(y).

σ, pass; s −→ σ, s (S-SEQ)

σ, s1 −→ σ′, s′1
σ, s1; s2 −→ σ′, s′1; s2

(SC-SEQ)

σ, x := n −→ σ[x 7→ n], pass (S-ASN)

σ ` a −→ a′

σ, x := a −→ σ, x := a′
(SC-ASN)

σ, if true then s1 else s2 −→ σ, s1 (S-IFTRUE)

σ, if false then s1 else s2 −→ σ, s2 (S-IFFALSE)

σ ` b −→ b′

σ, if b then s1 else s2 −→ σ, if b′ then s1 else s2
(SC-IF)

σ, while b do s −→ σ, if b then (s; while b do s) else pass (S-WHILE)

Expression evaluation is defined by judgments of the form σ ` e −→ e′ (“e reduces to e′ with store σ”).

To simplify the rules, we add the following syntax:

e ::= a | b expressions

v ::= n | true | false values

o ::= + | < | and binary operations

σ ` x −→ σ(x) (E-VAR)

σ ` n1 < n2 −→ true (where n1 < n2) (E-LT)

σ ` n1 < n2 −→ false (where n1 ≥ n2) (E-GE)

σ ` n1 + n2 −→ n (where n = n1 + n2) (E-ADD)

σ ` false and b −→ false (E-ANDFALSE)

σ ` true and b −→ b (E-ANDTRUE)

σ ` e1 −→ e′1
σ ` e1 o e2 −→ e′1 o e2

(EC-L)

σ ` e −→ e′

σ ` v o e −→ v o e′
(EC-R)

σ ` not true −→ false (E-NOTTRUE)

σ ` not false −→ true (E-NOTFALSE)

σ ` e −→ e′

σ ` not e −→ not e′
(EC-NOT)

2

