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Abstract—Code review is advocated as one of the best practices
to improve software quality and reduce the likelihood of intro-
ducing defects during code change activities. Recent research has
shown how code components having a high review coverage (i.e.,
a high proportion of reviewed changes) tend to be less involved
in post-release fixing activities. Yet the relationship between code
review and bug introduction or the overall software quality is
still largely unexplored.

This paper presents an empirical, exploratory study on three
large open source systems that aims at investigating the influence
of code review on (i) the chances of inducing bug fixes and (ii)
the quality of the committed code components, as assessed by
code coupling, complexity, and readability.

Findings show that unreviewed commits (i.e., commits that
did not undergo a review process) have over two times more
chances of introducing bugs than reviewed commits (i.e., commits
that underwent a review process). In addition, code committed
after review has a substantially higher readability with respect
to unreviewed code.

Index Terms—Code Review, Mining Software Repositories,
Empirical Studies

I. INTRODUCTION

Peer Code Review (or simply Code Review) is the process
of analysing code written by a teammate to judge whether
it is of sufficient quality to be integrated into the main
code trunk. With respect to a traditional inspection process
formalised by Fagan [14], code review is more informal, tool-
based, and used regularly in practice [2]. Previous works have
investigated the effects of code review both in open source
[28], [29], [5], [6], [23] and in industrial [2], [19] systems.
Most of the studies have been performed by mining modern
code review repositories (e.g., Gerrit!, Microsoft’s CodeFlow
[2], Google’s Mondrian?, Facebook’s Phabricator®) that allow
for automated analysis of code reviews by providing on-line
structured information on review comments and participants,
and references to commits and their patches.

Recent research has mainly mined such repositories to
describe the review process and the communication among
reviewers with qualitative and quantitative analysis [10], [9],
[25]. In 2014, MclIntosh et al. [23] have pioneered a study
on the effect of code reviews on quality by mining such
repositories. The authors have shown that in open source
systems the percentage of reviewed changes a code component
underwent correlates inversely to its chance of being involved
in post-release fixes. The authors have also illustrated that low
participation increments the occurrence of such fixes. At the
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same time, Beller ef al. [6] have characterised the type of
defects fixed in modern code review repositories. All these
studies reflected on the code review process and its outcome.

As a new contribution to the field, we examine software
quality with and without code review by means of using
on-line history repositories. Specifically, we investigate to
what extent code review impacts on the chances of in-
ducing bug fixes during commit activities and the internal
quality of the committed code components, as assessed by
code complexity [22], coupling [12], and readability [11]. To
perform our study, we mined the change history of three
software systems, Android frameworks base APIs,
LibreOffice, and Scilab that use the Gerrit code review
repository.

We extracted all commit data of the three systems starting
from the day in which they adopted Gerrit as code review
platform and collected a total of 87,197 commits. Then,
we retrieved all code reviews from the Gerrit repository.
By linking commits and reviews, we classified commits as
reviewed (i.e., commits that underwent a review process before
code is committed) or unreviewed. We further used the SZZ
algorithm [32], [20] to determine commits that induce bug
fixes. By definition, these commits contain the last change to
a piece of code that has been later changed in fixing a bug.
We then compared the proportions of commits that induced a
bug and the variation of internal code quality in reviewed and
unreviewed commits. Finally, we analysed the participation
degree in terms of number of reviewers and comments [23] in
all reviewed commits to verify its influence on the chances of
inducing bugs. In other words, we study whether lax reviews
have higher chances to induce future bug fixes.

Our findings show that:

o Unreviewed commits have over two times higher chance
of inducing bug fixes with respect to reviewed commits;

o Code committed after review has a significantly higher
readability with respect to the code committed without
review;

o On two of the three object systems, the lower the number
of reviewers involved in a code review, the higher the
chance of inducing bug fixes.

The contribution of this paper is twofold:

o An empirical study performed on three large open source
systems that aims at investigating the relationship be-
tween code review practices and code quality by means
of on-line repositories. To the best of our knowledge
the present study is the first that (i) investigates the
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relation between code review, reviewers participation and
the induction of bug fixes, (ii) classifies reviewed and un-
reviewed commits and compares the chances of inducing
bug fixes in the two categories, and (iii) compares code
complexity, coupling and readability in committed code
of reviewed and unreviewed commits.

o A comprehensive replication package [4], including the
R scripts and working data sets used to run the statistical
tests and produce the results reported in this paper.

Structure of the paper. Section II defines our empirical study
and the research questions, and provides details about the data
extraction process and analysis method. Section III reports the
results of the study, answering our research questions, while
Section IV discusses the threats that could affect the validity
of the results achieved. Section VI concludes the paper and
outlines directions for future work, after a discussion of the
related literature (Section V).

II. STUDY DESIGN

The goal of the study is to compare reviewed and unre-
viewed commits and their committed code in terms of the
chances of inducing bug fixes and the quality of the committed
code respectively. The quality focus is on bug introduction
and code internal quality, which could be influenced by
code review activities. The perspective is of researchers and
practitioners interested in the effects of code review on code
quality.

A. Context and Research Questions

The context of the study consists of the change and review
history of three open source projects, namely Android
frameworks base APIs, LibreOffice, and Scilab.
Android frameworks base is a subsystem of the An-
droid APIs and collects the classes and services that can be
used by all devices hosting an Android operating system.
LibreOffice is an office suite while Scilab is a software
for numerical computation providing a computing environment
for scientific applications. Table I reports the characteristics
of the analysed systems: programming language, observation
time period, size range (KLOC), number of bugs (#issues),
and number of commits.

We choose the object systems according to the following
selection criteria:

Criterion 1 - On-line traceability of the reviewed activity with
bugs, commits, and patches. We selected projects that
use an on-line versioning system, an issue tracker, and
a Gerrit code review repository.

Criterion 2 - Representativeness of the sample classes. We
selected projects that have a sufficient number of both
reviewed and unreviewed commits to perform statistically
significant comparison. Each of the selected projects has
at least 200 reviewed and unreviewed commits® (see
Table I).

“Note that for the Android APIs we only consider the reviews related to
the investigated subsystem (i.e., Android frameworks base).
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In the context of the study, we formulated the following
research questions:

RQ1 - Does code review affect the chances of inducing bugs
during commit activities? This research question investi-
gates if reviewed commits are less/more prone to induce
bug fixes than unreviewed commits. Indeed, one could
hypothesise that code written by a developer D and
then reviewed by some other developers before being
committed is less likely to induce bug-fixes than code
written and committed by D without any further check
by other developers. The null hypothesis being tested is
as following:

Ho1 - There is no difference in the chance of inducing
fixes between reviewed and unreviewed commits.

RQs - Does the code review participation degree affect the
chances of inducing bugs during commit activities? This
research question aims at verifying if there is a relation-
ship between the degree of participation in a code review
(e.g., the number of involved reviewers) and the chances
of inducing a bug-fix. The null hypothesis being tested is
as following:

Ho 2 - There is no difference in participation degree
between reviewed commits that induce and not induce
bug fixes.

RQs - Does code review affect the quality of the code com-
ponents committed by developers? This research question
investigates whether the code components committed in
reviewed commits exhibit a higher/lower quality than
those committed in unreviewed commits. In particular, we
measure three attributes of quality: complexity, coupling,
and readability. For any of these quality attributes, we
test the following null hypothesis:

Ho,3 - There is no difference between the quality at-
tribute of code components in reviewed and unreviewed
commits.

B. Data Extraction Process

Fig. 1 depicts the main steps behind the data extraction
process that we followed. The top left steps describe how we
collected commits and link them to reviews by mining change



TABLE I
CHARACTERISTICS OF SYSTEMS UNDER ANALYSIS

. . . #Commits
Project Link Language Period KLOC  #Issues Roviewed Unreviewed
Android frameworks base APIs  http://tinyurl.com/lwoypdk  Java Jan 2010-Dec 2014  534-1,043 9,311 1,593 31,761
LibreOffice http://www.libreoffice.org/  C++ Mar 2011-Oct 2014 64-6,812 3,104 5,337 45,763
Scilab http://www.scilab.org Java/C++ Jan 2010-Sep 2014  679-3,172 1,421 2,499 243
Overall - - - - 13,836 9,429 77,677

logs of the Git version control system and reviews in the Gerrit
repository, respectively.

We first mine the change log of code checked-in by de-
velopers in Git. To reduce potential noise in our analysis, we
excluded (i) the first commit that imports entire initial version
of the system into the repository and (ii) commits involving
more than 30% of the files in the repository that are likely
due to re-organization of files in folders or license statement
changes. In addition, we only analyse the change history of
the object systems starting from the first day in which they
started using Gerrit (i.e., the day in which the first review was
created in Gerrit). This is needed since, once we collected
the commits, we classified them into reviewed and unreviewed
based on the information stored in the Gerrit repositories.

Firstly, we downloaded from each Gerrit instance of a
project the set of reviews related to merged changes (i.e.,
changes that have been reviewed and then merged in the
versioning system). Gerrit is a web based code review system
for projects using the Git version control system. The typical
reviewing process in Gerrit is performed as follows:

1) Authors of a code change upload the corresponding patch
(i.e., a portion of code aimed at updating a software
system) in Gerrit, asking for review.

2) A set of reviewers are assigned to a code change with the
responsibility of verifying the correctness and soundness
of the patches. The selection of such reviewers can be
manual (e.g., directly performed by the change’s author)
or automatic (i.e., Gerrit can automatically allocate re-
viewers to patches on the basis of their experience). A set
of verifiers can also be assigned to the patch. While the
role of reviewers is to look at the code, to ensure it meets
the project guidelines, intent etc., verifiers generally just
check that the code actually compiles and unit tests pass.
For this reason, the verification activity is often automated
by sanity bots.

3) The involved reviewers assign a score ranging between -2
(block the change) and 2 (allow the change) to the patch,
while the verifiers just assign a fail (-1) or pass (+1) score
to the patch. Based on the project policy, changes that
receive positive scores (e.g., the patch has been verified
by the bot, and has received at least one +2 and no -2
from reviewers) are merged in the Git repository, and the
status of the change becomes merged. Instead, in case
of negative reviews, the patch might be updated and re-
submitted for a new review round or abandoned.

For each review, we store: (i) the author of the change,

(i) the list of reviewers’, (iii) the comments present in the

SNote that reviewers, on the opposite of verifiers, are not automatic bots.
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discussion®, and (iv) its Change-Id. The latter is an alpha-
numeric hash code uniquely identifying each review. When
reviewed changes are merged (committed) into the versioning
control system, the Change-Id is automatically reported in
the commit message for traceability purposes. Through the
Change-Id, we link reviews to commits and label a commit as
reviewed if it is linked to a review having at least one reviewer,
excluding the author of the change if present among the
reviewers. Otherwise the commit is classified as unreviewed.

The right-bottom part of Fig. 1 illustrates the mining
process of change logs to identify commits inducing bug-
fixes. Firstly, we identified bug fixing commits by mining
regular expressions containing issue IDs in the change log
of the versioning system, e.g., “fixed issue #ID” or “issue
ID”. Secondly, for each issue ID related to a commit, we
downloaded the corresponding issue reports from their issue
tracking system and extracted the following information from
them (i) product name; (ii) issue’s type, i.e., whether an issue
is a bug, enhancement request, efc.; (iii) issue’s status, i.e.,
whether an issue was closed or not; (iv) issue’s resolution,
i.e., whether an issue was resolved by fixing it, or whether
it was a duplicate bug report, or a “works for me” case; (v)
issue’s opening date; (vi) issue’s closing date, if available.

Then, we checked each issue’s report to be correctly down-
loaded (e.g., the issue’s ID identified from the versioning
system commit note could be a false positive). After that, we
used the issue type field to classify the issue and distinguish
bug fixes from other issue types (e.g., enhancements). Finally,
we only considered bugs having Closed status and Fixed
resolution. In this way, we restricted our attention to (i) issues
that were related to bugs, and (ii) issues that were neither
duplicate reports nor false alarms.

To answer RQ; and RQs, we identify commits that were
likely to induce fixes by means of the SZZ algorithm [32],
[20], last step of the data collection process for these re-
search questions (Fig. 1). The algorithm relies on the annota-
tion/blame feature of versioning systems. In essence, given a
bug-fix BFy, identified by the bug ID, k, the approach works
as follow:

1) For each file f;, i = 1...my involved in BFy (mg is the
number of files changed in BF), and fixed in its revision
rel-fix; j,, we extract the file revision just before the bug
fixing (rel-fix; j, — 1).

2) starting from the revision rel-fix;  — 1, for each source
line in f; changed to fix the bug k the blame feature of Git
is used to identify the file revision where the last change

%We removed comments left by automatic bots exploited in Gerrit as
verifiers.



to that line occurred. In doing that, blank lines and lines
that only contain comments are identified using an island
grammar parser [24]. This produces, for each file f;, a set
of n; ;, fix-inducing revisions rel-bug; ; x, j = 1...1; .
Thus, more than one commit can be indicated by the SZZ
algorithm as responsible for the inducing of a fix.

To collect data for RQs, we developed a tool that measures
complexity, coupling, and readability in the code involved
in each commit we have previously identified (see right-
bottom steps in Fig. 1). Worth noticing here that our analysis
has been performed at “file level” for sake of simplicity.
Thus, we measure code complexity of a file as the sum of
the McCabe’s cyclomatic complexity [22] of the methods it
contains. Coupling for a file is measured as the the sum of
the Coupling Between Object [12] of the classes it contains.
Note that both the values of complexity and coupling are non-
negative and unbounded. Finally, we measured the readability
of a file by exploiting the metric proposed by Buse and Weimer
[11]. This metric combines a set of low-level code features
(e.g., identifiers length, number of loops, efc.) and has been
shown to be 80% effective in predicting developers’ readability
judgments. We used the authors’ implementation of such a
metric’. Given a code file, the readability metric takes values
between 0 (lowest readability) and 1 (maximum readability).

From a commit C, our tool extracts its id, the date in which
it has been performed, and the list of files added, deleted, and
modified in such a commit; then it computes the complexity,
coupling, and readability of the source code files that have
been modified in C before and after the changes applied in C;
and (ii) the complexity, coupling, and readability of the source
code files added in C. We compute the complexity of the code
involved in a commit C as:

(compc (M) — compe_, (M) 4+ compc(A)
|M| + [A]

comp(C) =

where compo (M) — compe_, (M) is the complexity diff of
the files modified in C, compc(A) is the complexity of the
files added in C, and |M| and |A| are the number of files
modified and added in C, respectively. We do not consider
files deleted in C since their complexity cannot be charged in
any way (positive or negative) on commit C. The complexity of
the files deleted in C' is charged to the previous commits that
either modified/added any of these files. We further discuss
such a choice in Section IV. The computation of coupling(C)
and readability(C) is specular to the complexity(C) one. Note
that complexity, coupling, and readability for a commit C can
assume positive as well as negative values. For instance, a
commit C not adding any new file but reducing the complexity
of the files it modifies will have a negative value of complex-
ity(C).

In total, our tool mined 87,197 commits, providing for each
of them the three quality measures described above. This
process took four weeks of computation on a workstation
having a quad-core 3.2Ghz CPU and 8Gb of RAM.

7 Available at http://tinyurl.com/kzw43n6
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C. Analysis

This subsection describes the analyses and statistical pro-
cedures that we used to answer the three research questions
formulated in Section II-A.

To address RQ;, we compute the contingency matrix de-
fined by:

e NBy g, the number of unreviewed commits that did not

induce a bug-fix;

e By, the number of unreviewed commits that did induce

a bug-fix;

e NBr, the number of reviewed commits that did not

induce a bug-fix;

e By, the number of reviewed commits that did induce a

bug-fix.

Then, we use the Fisher’s exact test [30] to test whether
the proportions By r/NB g and Br/NBpg significantly differ.
Correspondingly, we use the Odds Ratio (OR) [30] of the
two proportions as effect size measure. An OR of 1 indicates
that the condition or event under study (i.e., the chances of
inducing a bug) is equally likely in both groups. An OR greater
than 1 indicates that the condition or event is more likely in
the first group (i.e., the unreviewed commits in our case). Vice
versa, an OR lower than 1 indicates that the condition or event
is more likely in the second group (i.e., the reviewed commits).

In the context of RQ,, we further investigate the participa-
tion in code review and its effects on the chance of inducing
a bug fix during commit activities, similarly to what has been
done by Mclntosh et al. [23]. Participation is measured by
using as proxies (i) the number of involved reviewers and
(i1) the number of comments left in the review discussion.
One could expect that reviewed commits for which the linked
review has a high participation (i.e., several reviewers involved
and/or several comments left in the discussion) are less prone
to induce bugs. To verify such a hypothesis, we present a
descriptive statistics reporting:

1) The distribution of the number reviewers in reviewed
commits that induced a bug (buggy reviewed commits)
and in reviewed commits that did not induce a bug (clean
reviewed commits).

2) The distribution of the number of comments in buggy
and clean reviewed commits.

To compare the two distributions of buggy and clean reviewed
commits, we exploit the Mann-Whitney test [13]. This latter
is used to analyse statistical significance of the differences
between the number of reviewers and the number of comments
in buggy and clean reviewed commits. The results are intended
as statistically significant at o = 0.05. We also estimated
the magnitude of the measured differences by using the
Cliff’s Delta (or d), a non-parametric effect size measure [15]
for ordinal data. We followed well-established guidelines to
interpret the effect size values: negligible for |d| < 0.10, small
for 0.10 < |d| < 0.33, medium for 0.33 < |d| < 0.474, and
large for |d| > 0.474 [15].

Concerning RQs, we report and compare the descriptive
statistics of the distribution (box plots) of complexity, cou-



TABLE II
NUMBER OF COMMITS REVIEWED (OR NOT) AND INDUCING (OR NOT) A
BUG, AND RESULTS OF THE FISHER’S EXACT TEST.

System NByr Bnr NBr Bgr p-value OR

Android APIs 23439 8,322 1,521 81 <0.001 3.98

LibreOffice 43,216 2,547 5,190 147 <0.001 2.08

Scilab 119 15 2370 129 0.001 2.20
TABLE IIT

SIZE COMPARISON, IN TERMS OF IMPACTED LOC, BETWEEN reviewed
AND unreviewed COMMITS.

Reviewed commits Unreviewed commits
Mean  Median  St. Dev. Mean  Median  St. Dev.
2,619 1,155 3,658 3,586 1,731 4972
3,841 2,075 5,461 3,175 1,571 5,078
1,524 699 2,198 976 427 1,454

d

0.16 (Small)
-0.11 (Small)
-0.18 (Small)

System

Android APIs
LibreOffice
Scilab

p-value
<0.01

<0.01
<0.01

pling, and readability for reviewed and unreviewed commits.
Also in this case, the Mann-Whitney test and the Cliff’s Delta
are adopted to statistically support our findings.

III. RESULTS DISCUSSION

This section discusses the results achieved in our study
according to the three research questions.

A. RQj: Does code review affect the chances of inducing bugs
during commit activities?

Table II reports the number of commits in each of the
categories (NBygr, NBr, Bygr, and Bg) and the results of
the Fisher’s exact test and ORs for each project.

In all three systems, the proportion of bug inducing commits
is significantly different for commits involved or not in code
review activities. Unreviewed commits have always a higher
chance of inducing a bug-fix with respect to reviewed commits.
In particular, this chance is from 2.08 (LIBREOFFICE) up to
3.98 (ANDROID APIS) times higher—see Table II. Indeed, on
the ANDROID APIS 5% of reviewed commits induces a bug,
against 17% of unreviewed commits, on LIBREOFFICE 3% of
reviewed commits induces a bug against 6% of unreviewed
commits, and on SCILAB the comparison is 5% against 13%.

This result is likely due to the fact that some bugs are
caught during the reviewing process, thus reducing the chance
of inducing a future fix. However, we also have to take into
account the possible role played by the “size” confounding
factor. Indeed, as highlighted in previous work [20], [34],
larger commits (i.e., commits impacting a larger set of code
components) have a higher chance of being classified by the
SZZ algorithm as bug-inducing commits. Thus, it is possible
that the achieved results are simply due to the fact that
unreviewed commits are larger than reviewed commits, thus
having a higher chance of inducing bugs. Table III reports
descriptive statistics of the size for reviewed and unreviewed
commits measured as the number of impacted lines of code
as assessed by the Unix diff. Table III also reports the results
of the Mann-Whitney test (p-value) and Cliff’s Delta (d)
computed and interpreted by adopting the procedure described
in Section II-C. The first thing that leaps to the eyes is that,
while there is always statistically significant difference in
the size of reviewed and unreviewed commits, the magnitude
of such differences is always small. Also, on two out of
the three systems (i.e., LIBREOFFICE and SCILAB), reviewed
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Fig. 2. Word cloud of the 15 most common n-grams in reviewer’s comments.

commits are larger than unreviewed commits, thus strengthen
the likely role played by the code review process in avoiding
bug introduction. On the opposite, on the ANDROID APIS
project unreviewed commits are in general larger than reviewed
commits, highlighting a possible role played by the size factor
on the results achieved for this system. Nevertheless, the
consistent results reported in Table II for all three systems
(i.e., reviewed commits are less likely to induce bugs than
unreviewed commits), make us confident about the role played
by the code review process in reducing the chances of inducing
bugs. Indeed, also on systems where reviewed commits are
larger than unreviewed commits, we still observe their lower
chance of inducing bugs.

To have a more qualitative confirmation of this finding, we
performed a coarse grained automatic analysis of comments
left by reviewers in the reviewed changes. The goal of this
analysis is just to get an idea of the most frequent topics
tackled in the reviewers’ comments. To this aim, we extracted
from comments the n-grams composing them, considering
n € [2..4]. Fig. 2 reports the 15 most common n-grams we
found. Note that if x-gram was included in an y-gram with
z <y (e.g., the two-gram “is merged” is included in the three-
gram “it is merged”), we sum the x-gram frequency to the
y-gram ones. Also, we discarded all comments automatically
generated by Gerrit.

As we can notice there are two main “categories” among the
most frequent n-grams. The first concerns n-grams related with
comments indicating the approval of the reviewed patch; part
of this category are looks good to me, thanks for, someone
else must approve®, makes sense, is approved. The second
category relates instead to problems found by the reviewers
in the patch, e.g., this needs some tweaks, before it is merged,
there is a problem, there is a bug. This second category
shows as often reviewers ask for changes to the author of the
change, highlighting possible issues in the code under review.
In particular, n-grams like “there is a problem” and “there
is a bug” seem to support our quantitative findings, indicating
situations in which potential bugs have been fixed before being
committed (merged) in the code repository.

Summary for RQ;. The achieved results allow us to reject
the null hypothesis Hy ; and state that unreviewed commits

8The complete sentence generally is: “looks good to me but someone else
must approve”.



TABLE IV
Reviewed commits: IMPACT OF CODE REVIEW PARTICIPATION ON THE CHANCES OF INDUCING A BUG.

Number of reviewers

Clean reviewed commits

Buggy reviewed commits

Statistical test

System

mean median  min max st dev. mean median  min max st dev. p-value d
Android APIs 4.15 4.00 1.00 15.00 2.19 4.28 400 1.00 12.00 2.39 0.54 0.09 (Negligible)
LibreOffice 1.28 1.00  1.00 6.00 0.60 1.08 1.00  1.00 3.00 0.31 <0.001 0.13 (Small)
Scilab 1.22 1.00  1.00 5.00 0.50 1.06 1.00  1.00 4.00 0.33 <0.001 0.14 (Small)

Number of comments

Clean reviewed commits Buggy reviewed commits Statistical test
System - - - -

mean median  min max st dev. mean median  min max st dev. p-value d
Android APIs 7.56 6.00 2.00 113.00 7.10 7.49 6.00 2.00 20.00 4.46 0.83  -0.06 (Negligible)
LibreOffice 4.48 3.00 1.00 165.00 532 443 3.00 1.00 92.00 3.68 0.47 0.01 (Negligible)
Scilab 5.49 4.00 1.00 95.00 5.08 421 400 200 11.00 1.57 0.05 0.09 (Negligible)

have a much higher chance (over two times) of inducing bugs Android API LibreOffice scilab

with respect to reviewed commits.

B. RQ>: Does the code review participation degree affect the
chances of inducing bugs during commit activities?

Table IV reports the descriptive statistics for number of
reviewers (top part of Table IV) and number of comments
(bottom part of Table IV) for both clean and buggy reviewed
commits, the p-value of the Mann-Whitney test, and of the
Cliff’s d effect size when comparing clean and buggy reviewed
commits in terms of number of reviewers and number of
comments. The Mann-Whitney test indicates that the number
of reviewers plays a role in the chances of inducing a bug
for two of the systems. The Cliff’s d is positive, but small in
both projects. On the one side, this implies that the number
of reviewers for clean reviewed commits tends to be slightly
higher than for buggy reviewed commits. On the other side,
given its narrow range (see values for mean, median, and
standard deviation), this also indicates that the difference
“clean vs. buggy commits” in number of reviewers is limited
(one-two people). No significant difference can be observed
instead in the number of reviewers for the ANDROID APIS.

The Mann-Whitney test does not report significant differ-
ences when comparing the number of comments in reviewed
and unreviewed commits across the three projects (see Ta-
ble IV). Thus, we are not able to support or disprove the results
on participation in MclIntosh et al. [23] given that we cannot
tell whether comments have any role in inducing fixes.

Summary for RQs. In the case of number of reviewers, we
can reject the null hypothesis Hg o for two of the three projects
and state that a lower number of reviewers is correlated to a
higher chance of inducing new bug fixes.

C. RQs: Does code review affect the quality of the code
components committed by developers?

Figures 3, 4, and 5 depict the distribution of complexity,
coupling, and readability, respectively, between reviewed and
unreviewed commits on the three object systems’.

In all three systems, the median of code complexity is lower
in reviewed commits, Fig. 3. Also, a substantial part of the
distribution assumes negative values for reviewed commits,
indicating a drop in complexity of the code committed after

9Y-axis in Figures 3 and 4 has been delimited for sake of legibility.
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Fig. 3. Code complexity. The red spot is the mean.

a review. The Mann-Whitney test (p-value) confirms the dif-
ference between the distributions of complexity in reviewed
and unreviewed commits on two out of the three systems (see
Table V). The positive effect size (Cliff’s d) indicates that
this difference is due to higher complexity of code committed
without a review. This result is further confirmed in many of
the review comments we manually inspected. For instance, in
LibreOffice, in the review to change 5327'0, one of the
reviewers commented:

“This needs some tweaks before it is merged.

Some inline comments, check the rest of the change
if there are more similar instances where there is un-
necessary complex dance between OUStringBuffers
and OUStrings.”

Code review does not seem to have any effect on coupling,
Fig. 4. The box plots illustrate that there is higher coupling
in unreviewed commits on average, but this difference is not
so strong over the whole distribution. Namely, the Mann-
Whitney test is statistically significant for LIBREOFFICE and
the ANDROID APIS with positive effect size, but negligible
for the former, and small for the latter.

While we were not able to state a priori any specific
reason for this result, the manual inspection of commits and
committed code suggested that reviewers are mainly focused
on low level changes that often pertain few lines of code or a
single method. Conversely, coupling changes act on relations
between classes and, as such, require a larger view of the
system. This observation reminds what Bacchelli and Bird re-

10https://gerrit.libreoffice.org/#/c/5327/
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T
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ported about Microsoft’s developers complaining that reviews
often focus on minor logic errors rather than discussing deeper
design issues [2].

Readability of the committed code is definitely better af-
ter review. The distribution of readability is skewed toward
positive values for reviewed commits, Fig. 5. The result of the
Mann-Whitney test is significant and the Choen’s d is negative
(i.e., higher readability in reviewed commits) and medium/large
in all projects—see Table V. This result is likely due to two
different and complementary factors:

1) Review process. We can reasonably think that improve-
ments suggested by the reviewers during the review pro-
cess help in achieving a higher level of code readability.
Also in this case we manually analysed some of the code
reviews object of our study, founding dozens of examples
showing comments left by the reviewers aimed at improv-
ing code readability. For instance, in a LibreOffice
review!!, one of the reviewers commented: “Patch is
awesome thanks so much for this! [...] I'll push a
cleanup patch [...]. In general, I think we can have
[...suggested changes to the code...] to make it simpler
and more readable’.

Developer’s pride. Developers knowing that their code
will be subject to a review process performed by their
fellow colleagues, are likely to pay more attention in
writing clean and readable source code.

2)

Summary for RQs;. We reject the null hypothesis Hy 3
for the internal quality attributes complexity (on two systems)

https://gerrit libreoffice.org/#/c/10349/
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TABLE V
CODE INTERNAL QUALITY ATTRIBUTES IN reviewed AND unreviewed
COMMITS: MANN-WHITNEY TEST (p-VALUE) AND CLIFF’S DELTA (d).

complexity
System p-value d
Android APIs  <0.001 0.21 (Small)
LibreOffice <0.001 0.17 (Small)
Scilab 0.055  0.07 (Negligible)
coupling
System p-value d
Android APIs  <0.001 0.12 (Small)
LibreOffice <0.001  0.03 (Negligible)
Scilab 0.221  0.03 (Negligible)
readability
System p-value d
Android APIs  <0.001 -0.47 (Large)
LibreOffice <0.001 -0.50 (Large)
Scilab <0.001 -0.37 (Medium)

and readability. On the other side, we cannot reject the null
hypothesis Hy 3 on coupling.

IV. THREATS TO VALIDITY

This section describes the threats that can affect the validity
our study.

Threats to construct validity concern the relation between
the theory and the observation, and in this work are mainly due
to the measurements we performed. This is the most important
kind of threat for our study, and is related to:

o Misclassification of reviewed and unreviewed commits.
We used the reviews’ Change-Id to link commits and
reviews. The Change-1d is automatically reported in the
commit message making us confident in the correct
identification of such links. However, we cannot exclude
that some commits have been reviewed outside the Gerrit
system (e.g., in mailing lists), leading us to misclassify
some commits. At least, we only analysed the change
history of the object system in the time period in which
they adopted Gerrit as code review platform. Thus, all
reviewed commits should be identifiable via the Gerrit
repository.
Missing or wrong links between bug tracking systems and
versioning systems [7]. Although not much can be done
for missing links, we verified that links between commit
notes and issues are correct.
Imprecision in issue classification made by issue-tracking
systems [1]. While we cannot exclude misclassification of
issues (e.g., an enhancement classified as a bug), at least
the three systems we consider use an explicit classifi-
cation of bugs on issue tracking systems, distinguishing
them from other issues.

o Approximations due to identifying bug-inducing changes
using the SZZ algorithm [20]. At least, we used heuris-
tics to limit the number of false positives, for example
excluding blank and comment lines from the set of bug-
inducing changes. Also, we analysed the size of reviewed
and wunreviewed commits to verify the role played by
the size confounding factor in the identification of bug-
inducing commits [34].



o Imprecision due to tangled code changes [17]. We cannot
exclude that some reviewed commits grouped together
tangled code changes, of which just a subset has been
object of review process.

o Decision of not considering deleted files in the computa-
tion of complexity, coupling, and readability. For the rea-
sons explained in Section II-B, we did not consider files
deleted in each commit when measuring its values for
complexity, coupling, and readability. While this design
choice might have had an impact on the achieved results,
the percentage of commits deleting at least one file in the
three object systems is very low: 2.9% (ANDROID APIS),
2.2% (LIBREOFFICE), and 5.8% (SCILAB). Thus, we do
not expect this choice to have played a major role in our
main findings.

Threats to internal validity concern external factors we did
not consider that could affect the variables and the relations
being investigated. Such threats can intrude the relation be-
tween code review and bug induction or quality. To reinforce
the internal validity and interpret better the statistical results,
when possible, we integrated the quantitative analysis with
a qualitative one, showing examples we found by manually
inspecting the Gerrit repositories.

Threats to conclusion validity concern the relation between
the treatment and the outcome. Although this is mainly an
observational study, wherever possible we used an appropriate
support of statistical procedures, integrated with effect size
measures that, besides the significance of the differences
found, highlight the magnitude of such differences.

Threats to external validity concern the generalisation of
results. We involved in our study three large open source
systems. Again we used significance tests and effect size to
ensure statistical generalisation and measure the magnitude of
our observations. Yet, other systems should be analysed to
support our conclusions. This is especially needed in the case
in which the statistic output is not significant as in code review
participation and code coupling.

V. RELATED WORK

Our study is mainly related to studies (i) dealing with code
reviews, and (ii) mining software change history to identify
factors that can play a role in the bug introduction/induction.

A. Code Reviews

Weillgerber et al. [33] mine mailing lists looking for mes-
sages containing patches. They analyse the time required by
a patch to get accepted, also studying the impact of the patch
size on the likelihood of being accepted. Their findings show
that smaller patches have a higher chance to be accepted.

Rigby et al. [28] qualitatively examine the review practices
adopted in the Apache projects. Their study showed that
Apache reviews are performed continuously on small and
independent pieces of code by a small group of people. Also,
the authors highlighted several benefits provided by the review
process, such as the education of new developers and the
discussions aimed at fixing defects [28]. Our work studies the
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code review process from a more quantitative point of view,
trying to actually measure the benefits it provides.

Kemerer and Paulk [19] show that design and code review
reduces the amount of defects in student projects. With the
available data they were also able to study the impact of
review rate on the inspection performance. They found high
review rates (i.e., a high number of reviewed LOC/hour) to
be associated with a decrease in inspections effectiveness.
Differently from [19], our study targets three large open source
systems, and quantitatively analyses the impact of code review
on different aspects of software quality (i.e., defect-proneness
and internal code quality).

Rigby and Storey [29] analyse how the different stakehold-
ers involved in the review process interact in open source
systems. Two of the several findings they report are that (i)
developers tend to postpone reviews, thus leading patches that
fail to not generate interest among core developers until they
become interesting, and (ii) core developers tend to avoid
reviews that can lead to long, unproductive discussions [29].

Bacchelli and Bird [2] present a study performed in Mi-
crosoft and analysing the motivations, challenges, and out-
comes of tool-based code reviews. Their findings show that
while finding defects remain the main motivation for modern
code review, this latter brings several other benefits, like
knowledge transfer and creation of alternative solutions to
problems. Similar findings have been found in the study by
Beller et al. [6], that however focus on open source systems.
Both these studies are qualitative in nature, and with different
goals with respect to our work.

Baysal er al. [5] investigate the impact of non-technical fac-
tors (e.g., reviewer load and activity, patch writer experience,
etc.) on code review response time and outcome. The study,
performed on the WebKit system, highlights as the analysed
factors can strongly impact the code review outcomes.

Bosu [10] characterise the vulnerable code changes identi-
fied during peer code review. He found that less experienced
authors have up to 24 times higher chance of committing
vulnerable changes. Bosu and Carver [9] study the impact of
developer reputation on code review outcomes in open source
projects. Their findings highlight as changes implemented
by core developers as compared to those implemented by
peripheral developers are (i) reviewed faster and (ii) more
likely to be accepted in the project codebase.

Morales et al. [25] show the positive effect of code review
on software quality, and in particular of the likelihood of
introducing anti-patterns (i.e., reviewed code components are
less likely to be affected by anti-patterns).

The recent study by Mclntosh ef al. [23] is the closest to
our work. The authors mine the code review history of three
systems (i.e.,Qt, VTK, and ITK) to analyse the relationship
between code review coverage and participation and post-
release defects. Their results show that the higher the percent-
age of reviewed changes a code component underwent, the
lower is its chance of being involved in post-release defects
fixes. This result is inline with what we observed in our RQ;.



They also found that developer participation in code review!?
is associated with the incidence of post-release defects. Our
RQ2’s results only partially confirm this finding, since we
found only the number of reviewers involved to have an impact
on the chance of inducing a bug. Note that our work has
several differences from [23]:

1) The level of granularity. While in [23] the impact of
code review on code quality is measured by looking
at the relationship between post-release defects in code
components and their percentage of reviewed changes,
we directly compare the chance of inducing a bug in
reviewed and unreviewed commits, by using the SZZ
algorithm to identify fix-inducing commits.

The target systems. It is not by chance that there is no
overlap between the object systems exploited in our paper
and those used in [23]. Indeed, in [23] the authors focused
their attention on “systems where a large number of the
integrated patches have been reviewed”. On our side, we
needed systems with a good number of both reviewed
and unreviewed commits.

The additional quality aspects investigated in our work.
Our analysis of the impact of code review on the internal
quality of the committed code is a premiere.

2)

3)

B. Investigating Factors Impacting the Likelihood of Inducing
Fixes

Hassan [16] shows as the entropy of the code change
process is a good proxy for identifying defect-prone code
files. Eyolfson et al. [18] analyse the impact on the commits’
bugginess of three characteristics pertinent to commits: (i)
time of the day, (ii) day of the week, and (iii) developer’s
experience. Their results show that: (i) late-night commits
are buggier than others, (ii) no day is buggier than another,
and (iii) more experienced developers introduce bugs less
frequently. Their second finding is in contrast with what
observed by Sliwerski er al. [31], that identified Friday as
the day when developers are likely to introduce bugs.

Rahman and Devanbu [27] investigate the impact of the
ownership and the developer experience on the likelihood
of introducing bugs. The authors mined software repositories
looking for pieces of code modified to fix a bug; this code
was tagged as implicated code. The analysis of this implicated
code highlights that: (i) implicated code has higher ownership
levels than non-implicated code, (ii) implicated code owner
has lower contribution at a file level, and (iii) the experience
of an author has no clear association with implicated code.

Bird et al. [8] mine change history of Windows Vista
and Windows 7 to verify the existence of a relationship
between code ownership and software quality. They found that
high levels of ownership are associated with fewer bugs. Kim
et al. [20] use a machine learning-based classifier to determine
if a performed change is more likely to be a fix-inducing
change or a clean one.

12As in our paper, developer participation has been measured in [23]
by using as proxies the number of reviewers involved and the number of
comments they left.
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Bavota et al. [3] analyse the chances of refactoring op-
erations of inducing bug fixes. They found that while the
percentage of faults likely induced by refactorings is relatively
low (i.e., 15%), there are some specific kinds of refactorings
that are very likely to induce bug fixes, such as Pull Up Method
and Extract Subclass, where the percentage of fixes likely
induced by such refactorings is around 40%.

Posnett et al. [26] analyze the impact of developer’s focus
on bug introduction by analogising the developer-artifact con-
tribution network to a predator-prey food web. Their results
show that project leaders and top committers tend to be less
focused on specific aspects of the system and showed that
developers having specific focus introduce fewer bugs.

Our work enriches the current literature about factors im-
pacting the likelihood of inducing bugs by investigating the
impact of the code review process on the chance of inducing
a bug fix.

VI. CONCLUSION AND FUTURE WORK

In this paper, we reported an empirical analysis conducted
on three open source systems and aimed at investigating the
impact of code review practices on (i) the chances of inducing
a bug fix during commit activities, and (ii) the quality of
the committed code components as assessed by coupling,
complexity, and readability metrics.

We analysed the change and review history of three open
source systems, by linking the commits to the corresponding
reviews extracted from Gerrit. Commits linked to a review
were classified as reviewed commits, while those not linked
to any review were labeled as unreviewed commits. Then, we
used the SZZ algorithm [20] to determine whether each of the
considered commits induced bug fixes. Also, we computed
code metrics assessing the quality of the components commit-
ted in each commit.

Our results highlight the benefits of the code review process,
and in particular that:

1) unreviewed commits have a much higher chance (over
two times) of inducing bug fixes with respect to reviewed
commits. The most reasonable explanation for this result,
also partially confirmed by our qualitative analysis, is that
bugs are caught during the review process thus reducing
the chances of inducing future fixes.

code committed through reviewed commits have a higher
readability with respect to the code committed in unre-
viewed commits. Also in this case we performed a qual-
itative analysis to at least in part confirm our quantitative
findings.

2)

Our future work agenda includes (i) replicate our study
on other systems, in order to corroborate or contradict our
findings; (ii) enlarge the set of quality metrics considered, in-
cluding additional metrics from the CK suite [12] and semantic
metrics [21]; and (iii) investigate the impact of code review on
abandoned commits to verify which commit’s characteristics
pushes the reviewers to recommend an abandonment.
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